

Neousys Technology Inc.

Nuvo-5100VTC Series

User Manual

Rev. 1.0

Table of Contents

Table of Contents	2
Legal Information	
Contact Information	
Declaration of Conformity	
Copyright Notice	7
Safety Precautions	8
Service and Maintenance	
ESD Precautions	9
About This Manual	-

1 Introduction

1.1	Nuvo-5100VTC Series Overview	
1.2	Nuvo-5100VTC Series Specifications	12
1.2.1	Nuvo-5100VTC Specification	12
1.2.2	Nuvo-5104VTC Specification	
1.2.3	Nuvo-5108VTC Specification	16
1.3	Isolated DIO Specifications	
1.4	Supported CPUs	18
1.5	Dimension	
1.5.1	Superior View	19
1.5.2	Front Panel View	20
1.5.3	Side View	20
1.5.4	Bottom View	21
1.5.5	Dimensions with Mount Bracket/ Anti-vibration Grommet	22

2 System Overview

2.1	Nuvo-5100VTC Series Packing List	23
2.2	Nuvo-5100VTC Series Front Panel	24
2.2.1	DisplayPort	25
2.2.2	DVI Port	26
2.2.3	VGA Port	27
2.2.4	USB3.0 Port	
2.2.5	Ethernet Port / PoE	
2.2.6	On/ Off Ctrl & Status Output	30
2.2.7	2.5" HDD Tray Lock/ HDD Tray	
2.2.8	System Status LED	31
2.2.9	Power Button	32
2.2.10	Reset Button	32
2.3	Nuvo-5100 VTC Series Rear Panel	
2.3.1	SIM Slot	
2.3.2	Ignition Control Switch	
2.3.3	CAN Bus Port	
2.3.4	M12 Power over Ethernet Port (Nuvo-5100 VTC)	
2.3.5	RJ-45 Power over Ethernet Port (Nuvo-5104VTC / 5108VTC)	37
2.3.6	3.5mm Speaker-out / Microphone-in Jack	
2.3.7	Digital Input/ Output	
2.3.8	COM Ports	
2.3.9	USB2.0 Ports	
2.3.10	3-Pin Terminal Block for DC and Ignition Input	
2.4	Internal I/O Components	
2.4.1	DDR4 SO-DIMM Slots	
2.4.2	Dual Mode mSATA/ mini-PCIe socket	
2.4.3	mini-PCIe Socket	
2.4.4	SATA Ports	
2.4.5	Internal USB Port	49
2.4.6	mini-PCIe Socket on MezIO [™] -V510	50

3 System Installation

3.1	Disassembling the System Enclosure	53
3.2	CPU Installation Procedure	54
3.3	Memory Module Installation	57
3.4	mini-PCIe Module Installation	58
3.5	Reinstalling the System Enclosure	60
3.6	Internal 2.5" SATA HDD/ SSD Installation	62
3.7	External 2.5" HDD/ SSD Installation	
3.8	DC Power Connection	66
3.9	Wall Mount/ Anti-Vibration Bracket Installation	67
3.9.1	Anti-vibration Bracket Installation	67
3.9.2	Wall Mount Bracket Installation	68
3.10	DIN Rail Installation (Optional)	
3.11	Powering On the System	70
3.11.1	Powering On Using the Power Button	
3.11.2	Powering On Using External Non-latched Switch	71
3.11.3	Powering On Using Wake-on-LAN	72
3.12	Ignition Power Control	74
3.12.1	Principles of Ignition Power Control	74
3.12.2	Additional Features of Ignition Power Control	75
3.12.3	Wiring Ignition Signal	76
3.12.4	Configure your Windows system	
3.12.5	Operation Modes of Ignition Power Control	78

4 System Configuration

4.1	BIOS Settings	82
4.1.1	COM1 & COM3 Operating Mode	83
4.1.2	CAN bus Termination	85
4.1.3	SATA Configuration	
4.1.4	Configure Hot-Swappable HDD Tray	
4.1.5	TPM Availability	
4.1.6	CPU SKU Power Configuration	90
4.1.7	Wake on LAN Option	91
4.1.8	Power On after Power Failure Option	92
4.1.9	Boot Type (Legacy/ UEFI)	93
4.1.10	Boot Option for Newly Added Device	94
4.1.11	Watchdog Timer for Booting	95
4.1.12	2 Selecting Legacy/ UEFI Boot Device	97
4.2	AMT Configuration	
4.3	RAID Volume Configuration	

5 OS Support and Driver Installation

5.1	Operating System Compatibility	
5.2	Install Drivers Automatically	
5.3	Install Drivers Manually	
5.3.1	For Windows 7 (x86)	
5.3.2	For Windows 7 (x64)	
5.3.3	For Windows 8/ 8.1/ 10 (x64)	
5.4	Install WDT_DIO Driver Package	
5.4.1	For Windows 7 (x86)	
5.4.2	For Windows 7/8/10 (x64)	
5.4.3	For Windows 7/ 8/ 10 (WOW64)	

Appendix A Windows 7 Installation

xHCI Driver Support in Microsoft OS	
User Provided Items For Windows 7 Installation	
Creating Windows 7 Installation USB Flash Drive	
Step 1 - Create .ISO File From Windows 7 DVD	

Step 2 - Create USB Flash Drive Installer From .ISO	106
Step 3 - Create Folder and Copy Files for Patching Process	
Step 4 - Execute .bat File to Patch .wim Files	109
Step 5 - Install Windows 7 Using USB Flash Drive Installer	

Appendix B Using WDT & DIO

WDT and DIO Library Installation113 WDT Function Reference
InitWDT
SetWDT
StartWDT
ResetWDT
StopWDT116
Using DIO Function
Wiring for DIO 117
DIO Pin Definition118
DIO Function Reference
InitDIO
DIReadLine
DIReadPort
DOWriteLine
DOWritePort
DOWriteLineChecked121
DOWritePortChecked
COS Function Reference
SetupDICOS
RegisterCallbackDICOS123
StartDICOS123
StopDICOS124
DI COS Example

Appendix C CAN bus Function

CAN Bus Function Reference	
CAN_RegisterReceived	
CAN_RegisterStatus	
CAN_Setup	
CAN_Start	
CAN_Stop	
CAN_Send	

Appendix D Ignition Control Function

Ignition Control Function Reference	
IGN GetState	
IGN_GetBatteryVoltage	
IGN_GetSetting	

Appendix E PoE On/ Off Control

GetStatusPoEPort	137
EnablePoEPort	138
DisablePoEPort	139

Legal Information

All Neousys Technology Inc. products shall be subject to the latest Standard Warranty Policy

Neousys Technology Inc. may modify, update or upgrade the software, firmware or any accompanying user documentation without any prior notice. Neousys Technology Inc. will provide access to these new software, firmware or documentation releases from download sections of our website or through our service partners.

Before installing any software, applications or components provided by a third party, customer should ensure that they are compatible and interoperable with Neousys Technology Inc. product by checking in advance with Neousys Technology Inc.. Customer is solely responsible for ensuring the compatibility and interoperability of the third party's products. Customer is further solely responsible for ensuring its systems, software, and data are adequately backed up as a precaution against possible failures, alternation, or loss.

For questions in regards to hardware/ software compatibility, customers should contact Neousys Technology Inc. sales representative or technical support.

To the extent permitted by applicable laws, Neousys Technology Inc. shall NOT be responsible for any interoperability or compatibility issues that may arise when (1) products, software, or options not certified and supported; (2) configurations not certified and supported are used; (3) parts intended for one system is installed in another system of different make or model.

Contact Information

Headquarters (Taipei, Taiwan)	Neousys Technology Inc. 15F, No.868-3, Zhongzheng Rd., Zhonghe Dist., New Taipei City, 23586, Taiwan Tel: +886-2-2223-6182 Fax: +886-2-2223-6183 <u>Email, Website</u>	
Americas (Illinois, USA)	Neousys Technology America Inc. 3384 Commercial Avenue, Northbrook, IL 60062, USA Tel: +1-847-656-3298 <u>Email, Website</u>	
China	Neousys Technology (China) Ltd. Room 612, Building 32, Guiping Road 680, Shanghai Tel: +86-2161155366 <u>Email, Website</u>	

Declaration of Conformity

FCC

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

CE

The product(s) described in this manual complies with all applicable European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

Copyright Notice

All rights reserved. This publication may not be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written consent of Neousys Technology, Inc.

Disclaimer This manual is intended to be used as an informative guide only and is subject to change without prior notice. It does not represent commitment from Neousys Technology Inc. Neousys Technology Inc. shall not be liable for any direct, indirect, special, incidental, or consequential damages arising from the use of the product or documentation, nor for any infringement on third party rights.

Patents and Trademarks	Neousys, the Neousys logo, Expansion Cassette, MezIO [™] are registered patents and trademarks of Neousys Technology, Inc.
	Windows is a registered trademark of Microsoft Corporation.
	Intel [®] , Core™ is a registered trademark of Intel Corporation
	NVIDIA [®] , GeForce [®] is a registered trademark of NVIDIA Corporation
	Texas Instruments (TI) and Sitara are registered trademarks of Texas Instruments Incorporated.
	All other names, brands, products or convises are trademarks or registered

All other names, brands, products or services are trademarks or registered trademarks of their respective owners.

Safety Precautions

- Read these instructions carefully before you install, operate, or transport the system.
- Install the system or DIN rail associated with, at a sturdy location
- Install the power socket outlet near the system where it is easily accessible
- Secure each system module(s) using its retaining screws
- Place power cords and other connection cables away from foot traffic. Do not place items over power cords and make sure they do not rest against data cables
- Shutdown, disconnect all cables from the system and ground yourself before touching internal modules
- Ensure that the correct power range is being used before powering the device
- Should a module fail, arrange for a replacement as soon as possible to minimize down-time
- If the system is not going to be used for a long time, disconnect it from mains (power socket) to avoid transient over-voltage

Service and Maintenance

- ONLY qualified personnel should service the system
- Shutdown the system, disconnect the power cord and all other connections before servicing the system
- When replacing/ installing additional components (expansion card, memory module, etc.), insert them as gently as possible while assuring connectors are properly engaged

ESD Precautions

- Handle add-on module, motherboard by their retention screws or the module's frame/ heat sink. Avoid touching the PCB circuit board or add-on module connector pins
- Use a grounded wrist strap and an anti-static work pad to discharge static electricity when installing or maintaining the system
- Avoid dust, debris, carpets, plastic, vinyl and styrofoam in your work area.
- Do not remove any module or component from its anti-static bag before installation

About This Manual

This manual introduces Neousys Technology Nuvo-5100VTC series in-vehicle systems that are designed for in-vehilce and railway applications with EN 50155 certification. The fanless systems support Intel 6th generation quad-core CPUs to provide exceptional performance for emerging high-end in-vehicle applications.

Applicable systems: Nuvo-5100VTC, Nuvo-5104VTC, Nuvo-5108VTC

Revision History

Version	Date	Description
1.0	Jan. 2018	Initial release

1 Introduction

Neousys' Nuvo-5100VTC series in-vehicle fanless computers support 6th Gen Intel® Core[™] i7/ i5 quad-core CPUs to provide extraordinary performance for emerging high-end in-vehicle applications.

1.1 Nuvo-5100VTC Series Overview

Nuvo-5100VTC series is a fanless PC with EN 50155 (Nuvo-5100VTC) and E-mark (Nuvo-5108VTC) certification for in-vehicle & railway applications. The series features integrated IEEE 802.3at PoE+ ports in RJ45 socket/ M12 connectors. The RJ45 connectors offer compatibility and ease of connection while the M12 connectors offer rugged Ethernet connectivity while both can supply power to IP cameras for surveillance applications. By using X-coded M12 connectors, they offer higher rated voltage (60V), higher rated surge voltage (1.5kV) and higher data bandwidth (up to 10Gbps) to meet higher safety regulation requirements and in turn boost Gigabit Ethernet connection stability and reliability.

The Nuvo-5100VTC series platform offers dual DisplayPort outputs, dual Gigabit Ethernet, 4 or 8 PoE+, 4 USB 3.0, SATA, 3 COM ports, mini-PCIe, CAN bus and isolation digital I/O. Nuvo-5100VTC series supports 8~35V DC input and is suitable to be deployed in wide temperature operating conditions ranging from -25°C to 70°C.

Designed for in-vehicle deployment and has EN 50155 certification for railway applications, Nuvo-5100VTC series also features intelligent ignition power control and an easy-swap HDD tray. The derivative model, Nuvo-5108VTC, carries E-Mark to meet the requirements of European UN regulations for in-vehicle use.

Nuvo-5100/ 5104VTC

MX12 connectors on Nuvo-5100VTC

Nuvo-5108VTC

PoE ports on Nuvo-5108VTC

1.2 Nuvo-5100VTC Series Specifications

1.2.1 Nuvo-5100VTC Specification

System Platfo	rm		
	Supports 6 th -Gen Intel® Core™ LGA1151 CPU		
Processor	● Intel® Core™ i7-6700TE (2.4/ 3.4 GHz, 8MB cache, 35W TDP)		
	● Intel® Core™ i5-6500TE (2.3/ 3.3 GHz, 6MB cache, 35W TDP)		
	● Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP)		
Chipset	Intel® Q170 Platform		
Graphics	Integrated Intel® HD Graphics 530		
Memory	2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM		
I/O Interface			
Ethernet	2x Ethernet ports by Intel® I219 and I210		
PoE+	4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (M12 x-coded) by Intel® I210		
	1x VGA supporting maximum 1920 x 1200 resolution		
Video Port	1x DVI-D supporting maximum 1920 x 1200 resolution		
	2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution		
USB	4x USB 3.0 ports via native xHCI controller		
	4x USB 2.0 ports		
Serial Port	2x software-programmable RS-232/422/485 (COM1 & COM3)		
Senai Fuit	1x RS-232 port (COM2)		
CAN	1x CAN 2.0 port		
Isolated DIO	4x isolated DI with COS interrupt and 4x isolated DO		
Audio	1x microphone-in and 1x speaker-out		
Storage Interf	ace		
SATA HDD	1x internal SATA port for 2.5" HDD/SSD		
SAIAHDD	1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/ 1)		
mSATA	1x full-size mSATA (mux with mini-PCIe)		
Expansion Bu	IS		
	1x full-size mini-PCIe socket with panel-accessible SIM socket		
Mini PCI-E	1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA)		
	2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets		
Power Supply	/ & Ignition Control		
DC Input	1x 3-pin pluggable terminal block for 8~35VDC DC input		
Ignition Control	Ignition power control with user-selectable on/ off delay		
Remote Ctrl. &	te Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LED		

Status Output	output		
Max. Power	With Core™ i7-6700TE: 49.2W (2.05A@24V)*		
	With Core™ i5-6500TE: 47.8W (1.99A@24V)*		
Consumption	With Core™ i3-6100TE: 39.4W (1.64A@24V)*		
Mechanical			
Dimension	240 mm (W) x 225 mm (D) x 79 mm (H)		
Weight	3.3 kg (approx.)		
Mounting	Neousys' patented damping bracket (standard) or DIN-Rail mounting		
	(optional)		
Environmenta	al		
Operating	-40°C ~ 70°C */** (EN 50155 Tx Class)		
Temperature	-40° C ~ 70° C 7 (EN 50155 TX Class)		
Storage	4020 0520		
Temperature	-40°C ~85°C		
Humidity	10%~90% , non-condensing		
Vibration	Operating, 5 Grms, 5-500 Hz, 3 Axes (w/ SSD, according to IEC60068-2-64)		
Shoold	Operating, 50 Grms, Half-sine 11 ms Duration (w/ SSD, according to		
Shock	IEC60068-2-27)		
Certification	EN 50155 / EN 50121-3-2 / EN 50121-2-1 / EN50121-2-2 / EN 61373		
Certification	CE/FCC Class A, according to EN 55022 & EN 55024		

* Maximal power consumption is measured with 100% CPU and 3D loading applied using Passmark® BurnInTest[™] v8.0. No Ethernet connection and external PoE devices are connected. For detail testing criteria, please contact Neousys Technology.

** For sub-zero operating temperature, a wide temperature HDD drive or Solid State Disk (SSD) is required.

When running CPUs with greater than 35W TDP, the maximum operating temperature shall be limited to 50°C and thermal throttling may occur when sustained full-load is applied. Users can configure CPU power in BIOS to obtain higher operating temperature.

1.2.2 Nuvo-5104VTC Specification

Status OutputoutputMax. PowerWith Core™ i7-6700TE: 49.2W (2.05A@24V)*					
Processor Intel® Core™ i7-6700TE (2.4/ 3.4 GHz, 8MB cache, 35W TDP) Intel® Core™ i5-6500TE (2.3/ 3.3 GHz, 6MB cache, 35W TDP) Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) Chipset Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) Chipset Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) Chipset Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) Chipset Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) Chipset Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) Chipset Integrated Intel® HD Graphics 530 Memory 2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM I/O Interface Ethernet 2x Ethernet ports by Intel® I219 and I210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 1x VGA supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution 2x BisplayPort outputs, supporting maximum 4096 x 2304 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution USB 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports Serial Port 1x RS-232 port (COM2) CAN 1x RS-232 port (COM2) CAN 1x CAN 2.0 port <td>System Platfo</td> <td>rm</td>	System Platfo	rm			
Processor • Intel® Core™ i5-6500TE (2.3/ 3.3 GHz, 6MB cache, 35W TDP) • Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) • Intel® Q170 Platform Graphics Integrated Intel® HD Graphics 530 Memory 2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM I/O Interface Ethernet Ethernet 2x Ethernet ports by Intel® I219 and I210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 Video Port 1x VGA supporting maximum 1920 x 1200 resolution 1x DVI-D supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution WSB 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports Video Port 1x RS-232 port (COM2) 2X software-programmable RS-232/422/485 (COM1 & COM3) Serial Port 1x cAN 2.0 port 1solated DIO Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD (support RAID0/ 1) mSATA 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-		Supports 6 th -Gen Intel® Core™ LGA1151 CPU			
● Intel® Core™ i3-6500TE (2.3/ 3.3 GHz, 6MB cache, 35W TDP) ● Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) Chipset Integrated Intel® HD Graphics 530 Memory 2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM I/O Interface Ethernet Ethernet 2x Ethernet ports by Intel® I219 and I210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 1x VGA supporting maximum 1920 x 1200 resolution 1x VGA supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution 2x Software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface Ix internal SATA port for 2.5" HDD/SSD SATA HDD 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with panel-accessible SIM sockets Power Supply & Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector	Processor	 Intel® Core™ i7-6700TE (2.4/ 3.4 GHz, 8MB cache, 35W TDP) 			
Chipset Intel® Q170 Platform Graphics Integrated Intel® HD Graphics 530 Memory 2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM I/O Interface Ethernet 2x Ethernet ports by Intel® I219 and I210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 Video Port 1x VGA supporting maximum 1920 x 1200 resolution Video Port 1x DVI-D supporting maximum 1920 x 1200 resolution QSB 4x USB 3.0 ports via native xHCI controller 4x USB 2.0 ports 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD (support RAID0/ 1) mSATA 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 2x f		● Intel® Core™ i5-6500TE (2.3/ 3.3 GHz, 6MB cache, 35W TDP)			
Graphics Integrated Intel® HD Graphics 530 Memory 2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM <i>VO</i> Interface Ethernet 2x Ethernet ports by Intel® I219 and I210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 Video Port 1x VGA supporting maximum 1920 x 1200 resolution Video Port 1x DVI-D supporting maximum 1920 x 1200 resolution USB 4x USB 3.0 ports via native xHCI controller 4x USB 2.0 ports 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x internal SATA (mux with mini-PCle) Expansion Bus 1x full-size mini-PCle socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCle socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCle sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 2x full-size mini-PCle sockets for 8-35VDC DC input Ignition power control with user-selectable on' off delay		 Intel® Core™ i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) 			
Memory 2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM I/O Interface Ethernet 2x Ethernet ports by Intel® I219 and I210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 Video Port 1x VGA supporting maximum 1920 x 1200 resolution Video Port 1x VGA supporting maximum 1920 x 1200 resolution USB 4x USB 3.0 ports via native xHCI controller 4x USB 2.0 ports 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output with Core TM i7-6700TE: 49.2W (2.05A@24V)* <td>Chipset</td> <td colspan="3">Intel® Q170 Platform</td>	Chipset	Intel® Q170 Platform			
I/O Interface Ethernet 2x Ethernet ports by Intel® 1219 and 1210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® 1210 Video Port 1x VGA supporting maximum 1920 x 1200 resolution Video Port 1x DVI-D supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution USB 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports Serial Port 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output Max. Power	Graphics	Integrated Intel® HD Graphics 530			
Ethernet 2x Ethernet ports by Intel® I219 and I210 PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 Video Port 1x VGA supporting maximum 1920 x 1200 resolution 1x DVI-D supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution USB 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x full-size mSATA port for 2.5" HDD/SSD SATA HDD 1x internal SATA port for 2.5" HDD/SSD (support RAID0/ 1) mSATA 1x full-size mSATA (mux with mini-PCle) Expansion Bus 1x full-size mini-PCle socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCle sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 2x full-size mini-PCle sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE status Output Ignition control Ignition power	Memory	2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM			
PoE+ 4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 Video Port 1x VGA supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface SATA HDD 1x internal SATA port for 2.5" HDD/SSD (support RAID0/1) mSATA 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input DC Input 1x 3-pin pluggable terminal block for 835VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output with Core™ i7-6700TE: 49.2W (2.05A@24V)* <td>I/O Interface</td> <td></td>	I/O Interface				
Video Port 1x VGA supporting maximum 1920 x 1200 resolution Video Port 1x DVI-D supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution USB 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports Serial Port 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x internal SATA port for 2.5" HDD/SSD (support RAID0/ 1) mSATA 1x full-size mSATA (mux with mini-PCle) Expansion Bus 1x full-size mini-PCle socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCle sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 2x full-size mini-PCle sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output	Ethernet	2x Ethernet ports by Intel® I219 and I210			
Video Port 1x DVI-D supporting maximum 1920 x 1200 resolution 2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports Serial Port 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Coe™ 17-6700TE: 49.2W (2.05A@24V)*	PoE+	4x IEEE 802.3at (25.5W) Gigabit PoE+ ports (RJ45) by Intel® I210			
2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution USB 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports Serial Port 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Coe™ i7-6700TE: 49.2W (2.05A@24V)*		1x VGA supporting maximum 1920 x 1200 resolution			
USB 4x USB 3.0 ports via native xHCl controller 4x USB 2.0 ports 2x software-programmable RS-232/422/485 (COM1 & COM3) Serial Port 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x internal SATA port for 2.5" HDD/SSD (support RAID0/1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	Video Port	1x DVI-D supporting maximum 1920 x 1200 resolution			
USB 4x USB 2.0 ports Serial Port 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface SATA HDD 1x internal SATA port for 2.5" HDD/SSD 1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 1x 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*		2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution			
4x USB 2.0 ports Serial Port 2x software-programmable RS-232/422/485 (COM1 & COM3) 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x full-size mSATA (mux with mini-PCle) Expansion Bus 1x full-size mini-PCle socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCle sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	USB	4x USB 3.0 ports via native xHCI controller			
Serial Port 1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface		4x USB 2.0 ports			
1x RS-232 port (COM2) CAN 1x CAN 2.0 port Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x internal SATA port for 2.5" HDD/SSD (support RAID0/1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	Sorial Dort	2x software-programmable RS-232/422/485 (COM1 & COM3)			
Isolated DIO 4x isolated DI with COS interrupt and 4x isolated DO Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x internal SATA port for 2.5" HDD/SSD (support RAIDO/ 1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	SellarFolt	1x RS-232 port (COM2)			
Audio 1x microphone-in and 1x speaker-out Storage Interface 1x internal SATA port for 2.5" HDD/SSD SATA HDD 1x internal SATA port for 2.5" HDD/SSD (support RAID0/ 1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	CAN	1x CAN 2.0 port			
Storage Interface SATA HDD 1x internal SATA port for 2.5" HDD/SSD 1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/ 1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	Isolated DIO	4x isolated DI with COS interrupt and 4x isolated DO			
SATA HDD 1x internal SATA port for 2.5" HDD/SSD 1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	Audio	1x microphone-in and 1x speaker-out			
SATA HDD1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/ 1)mSATA1x full-size mSATA (mux with mini-PCIe)Expansion Bus1x full-size mini-PCIe socket with panel-accessible SIM socketMini PCI-E1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM socketsPower Supply & Ignition ControlDC InputDC Input1x 3-pin pluggable terminal block for 8~35VDC DC inputIgnition ControlIgnition power control with user-selectable on/ off delayRemote Ctrl. &1x 10-pin (2x5) wafer connector for remote on/off control and status LEEStatus OutputoutputMax. PowerWith Core™ i7-6700TE: 49.2W (2.05A@24V)*	Storage Interf	ace			
1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/ 1) mSATA 1x full-size mSATA (mux with mini-PCIe) Expansion Bus 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*		1x internal SATA port for 2.5" HDD/SSD			
Expansion Bus Mini PCI-E 1x full-size mini-PCIe socket with panel-accessible SIM socket Mini PCI-E 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	SAIA NUU	1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/ 1)			
Mini PCI-E1x full-size mini-PCIe socket with panel-accessible SIM socket 1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM socketsPower Supply & Ignition ControlDC Input1x 3-pin pluggable terminal block for 8~35VDC DC inputIgnition ControlIgnition power control with user-selectable on/ off delayRemote Ctrl. &1x 10-pin (2x5) wafer connector for remote on/off control and status LEEStatus Outputwith Core™ i7-6700TE: 49.2W (2.05A@24V)*	mSATA	1x full-size mSATA (mux with mini-PCIe)			
Mini PCI-E1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA) 2x full-size mini-PCIe sockets (USB signals only) with internal SIM socketsPower Supply & Ignition ControlDC Input1x 3-pin pluggable terminal block for 8~35VDC DC inputIgnition ControlIgnition power control with user-selectable on/ off delayRemote Ctrl. &1x 10-pin (2x5) wafer connector for remote on/off control and status LEEStatus OutputoutputMax. PowerWith Core™ i7-6700TE: 49.2W (2.05A@24V)*	Expansion Bu	JS			
2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*		1x full-size mini-PCIe socket with panel-accessible SIM socket			
Power Supply & Ignition Control DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	Mini PCI-E	1x full-size mini-PCIe socket with internal SIM socket (mux. with mSATA)			
DC Input 1x 3-pin pluggable terminal block for 8~35VDC DC input Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*		2x full-size mini-PCIe sockets (USB signals only) with internal SIM sockets			
Ignition Control Ignition power control with user-selectable on/ off delay Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	Power Supply	y & Ignition Control			
Remote Ctrl. & 1x 10-pin (2x5) wafer connector for remote on/off control and status LEE Status Output output Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	DC Input	1x 3-pin pluggable terminal block for 8~35VDC DC input			
Status OutputoutputMax. PowerWith Core™ i7-6700TE: 49.2W (2.05A@24V)*	Ignition Control	Ignition power control with user-selectable on/ off delay			
Max. Power With Core™ i7-6700TE: 49.2W (2.05A@24V)*	Remote Ctrl. &	1x 10-pin (2x5) wafer connector for remote on/off control and status LED			
	Status Output	output			
Consumption With Core™ i5-6500TE: 47.8W (1.99A@24V)*	Max. Power	With Core™ i7-6700TE: 49.2W (2.05A@24V)*			
	Consumption	With Core™ i5-6500TE: 47.8W (1.99A@24V)*			

	With Core™ i3-6100TE: 39.4W (1.64A@24V)*		
Mechanical			
Dimension	240 mm (W) x 225 mm (D) x 79 mm (H)		
Weight	3.3 kg (approx.)		
Mounting	Neousys' patented damping bracket (standard) or DIN-Rail mounting		
	(optional)		
Environmenta	al		
Operating	-40°C ~ 70°C */**		
Temperature	-40 C ~ 70 C 7		
Storage	40%0 05%0		
Temperature	-40°C ~85°C		
Humidity	10%~90% , non-condensing		
Vibration	Operating, 5 Grms, 5-500 Hz, 3 Axes (w/ SSD, according to IEC60068-2-64)		
Shoold	Operating, 50 Grms, Half-sine 11 ms Duration (w/ SSD, according to		
Shock	IEC60068-2-27)		
Certification	CE/FCC Class A, according to EN 55022 & EN 55024		

- * Maximal power consumption is measured with 100% CPU and 3D loading applied using Passmark® BurnInTest[™] v8.0. No Ethernet connection and external PoE devices are connected. For detail testing criteria, please contact Neousys Technology.
- ** For sub-zero operating temperature, a wide temperature HDD drive or Solid State Disk (SSD) is required.

When running CPUs with greater than 35W TDP, the maximum operating temperature shall be limited to 50°C and thermal throttling may occur when sustained full-load is applied. Users can configure CPU power in BIOS to obtain higher operating temperature.

1.2.3 Nuvo-5108VTC Specification

ProcessorIntel® CoreProcessorIntel® CoreIntel® CoreIntel® CoreIntel® CoreIntel® CoreChipsetIntel® Q170 PlatforGraphicsIntegrated Intel® HiMemory $2x 260$ -pin SO-DIMI/O InterfaceIntegrated Intel® HiPoE+ $8x$ IEEE 802.3at (28)Video Port $1x$ VGA supportingVideo Port $1x$ DVI-D supporting $2x$ DisplayPort outp			
ProcessorIntel® CoreProcessorIntel® CoreIntel® CoreIntel® CoreChipsetIntel® Q170 PlatforGraphicsIntegrated Intel® HiMemory $2x 260$ -pin SO-DIMI/O InterfaceIntegrated Intel® HiPoE+ $8x$ IEEE 802.3at (28)Video Port $1x$ VGA supporting1x DVI-D supporting2x DisplayPort outp	i7-6700TE (2.4/ 3.4 GHz, 8MB cache, 35W TDP) i5-6500TE (2.3/ 3.3 GHz, 6MB cache, 35W TDP) i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) m D Graphics 530 IM sockets, up to 32 GB DDR4 2133 MHz SDRAM y Intel® I219 and I210 5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution g maximum 1920 x 1200 resolution		
Processor ● Intel® Core™ ● Intel® Core™ ● Intel® Core™ Chipset Intel® Q170 Platfor Graphics Integrated Intel® HI Memory 2x 260-pin SO-DIM I/O Interface Intel® 2x Ethernet ports by PoE+ 8x IEEE 802.3at (2x Ethernet ports by 1x VGA supporting Video Port 1x VGA supporting 2x DisplayPort outp	i5-6500TE (2.3/ 3.3 GHz, 6MB cache, 35W TDP) i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) m D Graphics 530 IM sockets, up to 32 GB DDR4 2133 MHz SDRAM y Intel® I219 and I210 5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution ig maximum 1920 x 1200 resolution		
● Intel® Core™ ● Intel® Core™ ● Intel® Core™ Chipset Intel® Q170 Platfor Graphics Integrated Intel® H Memory 2x 260-pin SO-DIM I/O Interface Intel® 02.3at PoE+ 8x IEEE 802.3at Video Port 1x VGA supporting 1x DVI-D supporting 2x DisplayPort outp	i3-6100TE (2.7 GHz, 4MB cache, 35W TDP) rm D Graphics 530 IM sockets, up to 32 GB DDR4 2133 MHz SDRAM y Intel® I219 and I210 5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution g maximum 1920 x 1200 resolution		
ChipsetIntel® Q170 PlatforGraphicsIntegrated Intel® HMemory2x 260-pin SO-DIMI/O InterfaceEthernet2x Ethernet ports bPoE+8x IEEE 802.3at (2)Video Port1x VGA supporting1x DVI-D supporting2x DisplayPort outp	rm D Graphics 530 IM sockets, up to 32 GB DDR4 2133 MHz SDRAM by Intel® I219 and I210 5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution og maximum 1920 x 1200 resolution		
GraphicsIntegrated Intel® HMemory2x 260-pin SO-DIMI/O InterfaceEthernet2x Ethernet ports bPoE+8x IEEE 802.3at (2)Video Port1x VGA supporting1x DVI-D supporting2x DisplayPort outp	D Graphics 530 IM sockets, up to 32 GB DDR4 2133 MHz SDRAM y Intel® I219 and I210 5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution ig maximum 1920 x 1200 resolution		
Memory 2x 260-pin SO-DIM I/O Interface 2x Ethernet ports by PoE+ 8x IEEE 802.3at (29) Video Port 1x VGA supporting 1x DVI-D supporting 2x DisplayPort outp	IM sockets, up to 32 GB DDR4 2133 MHz SDRAM by Intel® I219 and I210 5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution ig maximum 1920 x 1200 resolution		
I/O Interface Ethernet 2x Ethernet ports b PoE+ 8x IEEE 802.3at (2) Video Port 1x VGA supporting Video Port 1x DVI-D supporting 2x DisplayPort outp	y Intel® I219 and I210 5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution og maximum 1920 x 1200 resolution		
Ethernet2x Ethernet ports bPoE+8x IEEE 802.3at (2)Video Port1x VGA supportingVideo Port1x DVI-D supporting2x DisplayPort outp	5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution g maximum 1920 x 1200 resolution		
PoE+ 8x IEEE 802.3at (2) 1x VGA supporting Video Port 1x DVI-D supporting 2x DisplayPort outp	5.5W) Gigabit PoE+ ports (RJ45) by Intel® I210 maximum 1920 x 1200 resolution g maximum 1920 x 1200 resolution		
Video Port 1x VGA supporting 2x DisplayPort outp	maximum 1920 x 1200 resolution og maximum 1920 x 1200 resolution		
Video Port 1x DVI-D supportin 2x DisplayPort outp	g maximum 1920 x 1200 resolution		
2x DisplayPort outp	-		
	outs, supporting maximum 4096 x 2304 resolution		
Av LICE 2 0 northe st			
USB USB 3.0 ports vi	ia native xHCI controller		
4x USB 2.0 ports			
2x software-program	mmable RS-232/422/485 (COM1 & COM3)		
1x RS-232 port (CC	DM2)		
CAN 1x CAN 2.0 port			
Isolated DIO 4x isolated DI with	COS interrupt and 4x isolated DO		
Audio 1x microphone-in a	1x microphone-in and 1x speaker-out		
Storage Interface			
1x internal SATA po	ort for 2.5" HDD/SSD		
1x hot-swappable H	1x hot-swappable HDD tray for 2.5" HDD/SSD (support RAID0/ 1)		
mSATA 1x full-size mSATA	1x full-size mSATA (mux with mini-PCIe)		
Expansion Bus			
1x full-size mini-PC	Cle socket with panel-accessible SIM socket		
Mini PCI-E 1x full-size mini-PC	Cle socket with internal SIM socket (mux. with mSATA)		
2x full-size mini-PC	Cle sockets (USB signals only) with internal SIM sockets		
Power Supply & Ignition Control			
DC Input 1x 3-pin pluggable	1x 3-pin pluggable terminal block for 8~35VDC DC input		
Ignition Control Ignition power control	Ignition power control with user-selectable on/ off delay		
Remote Ctrl. & 1x 10-pin (2x5) wa	1x 10-pin (2x5) wafer connector for remote on/off control and status LED		
Status Output output	output		
Max. Power With Core™ i7-6700	With Core™ i7-6700TE: 49.2W (2.05A@24V)*		
Consumption With Core™ i5-6500	With Core™ i5-6500TE: 47.8W (1.99A@24V)*		

	With Core™ i3-6100TE: 39.4W (1.64A@24V)*			
Mechanical	Mechanical			
Dimension	240 mm (W) x 225 mm (D) x 79 mm (H)			
Weight	3.3 kg (approx.)			
Mounting	Neousys' patented damping bracket (standard) or DIN-Rail mounting			
	(optional)			
Environmental				
Operating	-40°C ~ 70°C */**			
Temperature	-40 C ~ 70 C 7			
Storage	-40°C ~85°C			
Temperature				
Humidity	10%~90% , non-condensing			
Vibration	Operating, 5 Grms, 5-500 Hz, 3 Axes (w/ SSD, according to IEC60068-2-64)			
Shock	Operating, 50 Grms, Half-sine 11 ms Duration (w/ SSD, according to			
SHUCK	IEC60068-2-27)			
Certification	E-mark E13 10R-0514321			
Certification	CE/FCC Class A, according to EN 55022 & EN 55024			

- * Maximal power consumption is measured with 100% CPU and 3D loading applied using Passmark® BurnInTest[™] v8.0. No Ethernet connection and external PoE devices are connected. For detail testing criteria, please contact Neousys Technology.
- ** For sub-zero operating temperature, a wide temperature HDD drive or Solid State Disk (SSD) is required.

When running CPUs with greater than 35W TDP, the maximum operating temperature shall be limited to 50°C and thermal throttling may occur when sustained full-load is applied. Users can configure CPU power in BIOS to obtain higher operating temperature.

1.3 Isolated DIO Specifications

Isolated Digital Input		
No. of Channel	4-CH Isolated Digital Input Channels	
Logic Level	Logic High: 5 to 24V	
Logic Level	Logic Low: 0 to 1.5V	
Isolated Voltage	e 2500 Vrms	
Input Resistance	1κΩ	
Operation Mode Polling I/O, Change-of-State Interrupt		
Isolated Digital Output		
No. of Channel	4-CH Isolated Digital Output Channels	
Sink Current	100 mA (sustained loading)	
(per channel)	250 mA (peak loading)	
Isolated Voltage	2500 Vrms	
Operation Mode	Polling, Change-of-State Interrupt	
Output Type	Power MOSFET + Analog Device iCoupler®	
Operation Mode	Polling I/O and Change-of-State interrupt for DI	

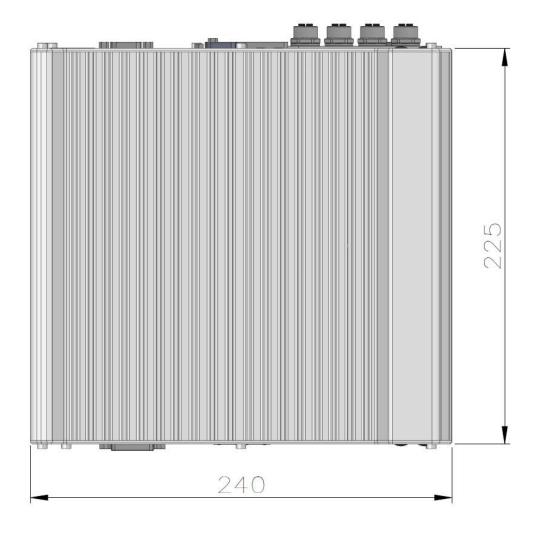
1.4 Supported CPUs

Nuvo-5100VTC series accepts Intel® 6th Gen. i7/ i5/ i3 processor via the LGA1151 CPU socket. Nuvo-5100VTC series support

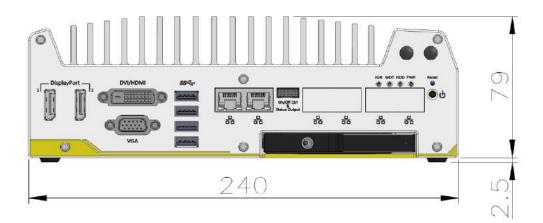
- Intel® Core™ i7-6700TE Processor (8M Cache, 2.4/ 3.4 GHz, 35W TDP)
- Intel® Core™ i5-6500TE Processor (6M Cache, 2.3/ 3.3 GHz, 35W TDP)
- Intel® Core™ i3-6100TE Processor (4M Cache, 2.7 GHz, 35W TDP)

Alternatively, you may also select a processor from Intel's Embedded solution "Products formerly Skylake" that utilizes LGA1151 CPU socket.

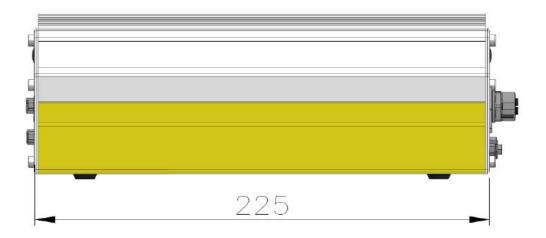
Other processors may result in different overall system power consumption or generate excess heat.


Avoid using CPUs not tested by Neousys Technology, as Neousys Technology may not be able guarantee the system's stability and functionality under its designated working environment.

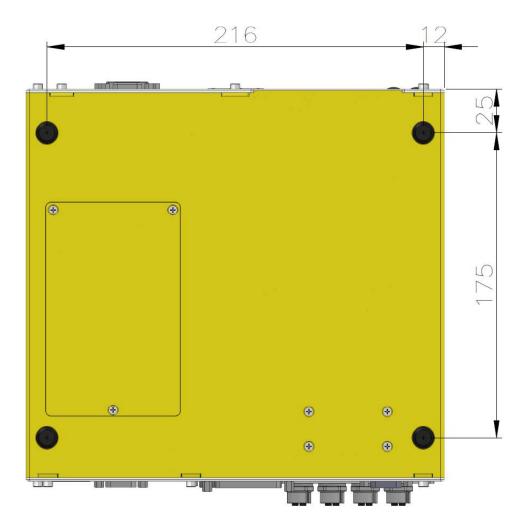
If in doubt, please contact Neousys technical support!


1.5 Dimension

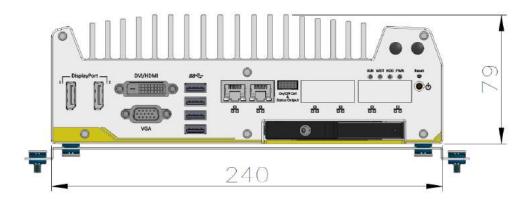
1.5.1 Superior View



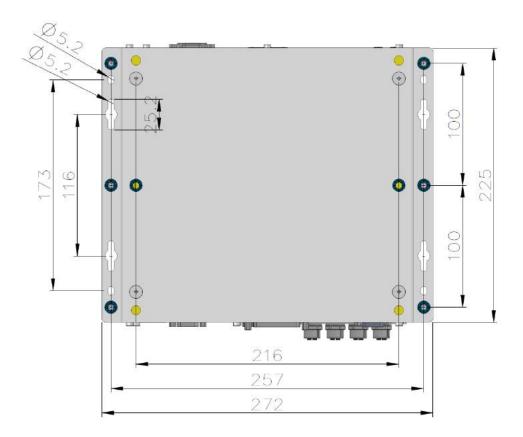
1.5.2 Front Panel View



1.5.3 Side View



1.5.4 Bottom View



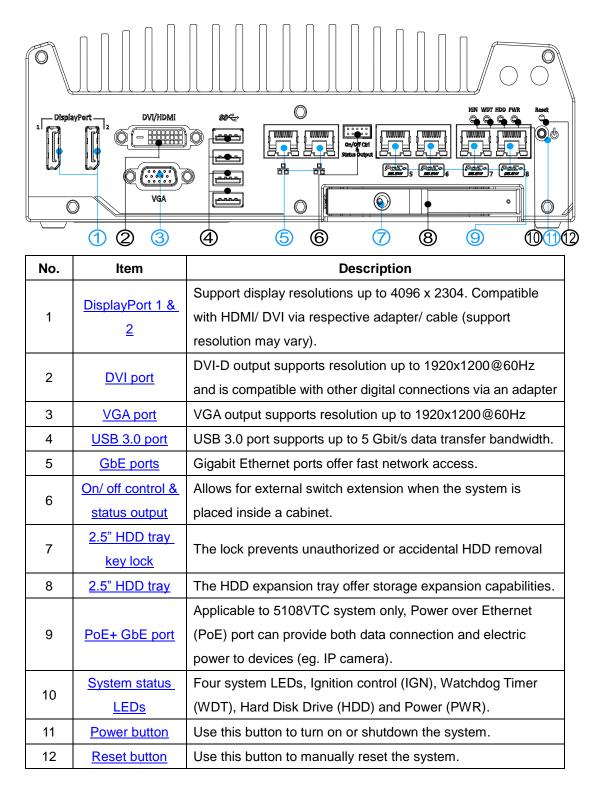
1.5.5 Dimensions with Mount Bracket/ Anti-vibration Grommet

Anterior View

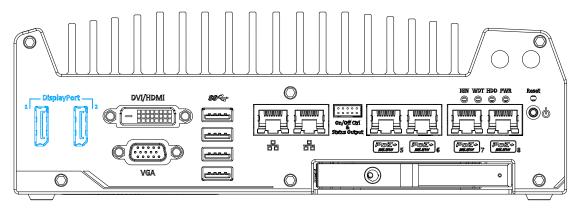
Bottom View

2 System Overview

Upon receiving and unpacking your Nuvo-5100VTC series, please check immediately if the package contains all the items listed in the following table. If any item(s) are missing or damaged, please contact your local dealer or Neousys Technology.


2.1 Nuvo-5100VTC Series Packing List

System Pack	Nuvo-5100VTC	Nuvo-5104VTC	Nuvo-5108VTC	Qty
4	Fanless in-vehicle co	ntroller / computer		4
1	(If you ordered CPU/	RAM/ HDD, please verif	y these items)	I
	Accessory box, whicl	h contains		
2	 Neousys drivers & utilities DVD 			1
	 Damping bracket for in-vehicle deployment (with 			1
	shock-absorbing grommets)			
	3-pin power terminal block			1
	 Key for hot-swappable HDD tray 			1
	 HDD thermal participation 	nd for 2.5" HDD/SSD (if H	IDD is not installed)	1
	 Screw pack 			1


2.2 Nuvo-5100VTC Series Front Panel

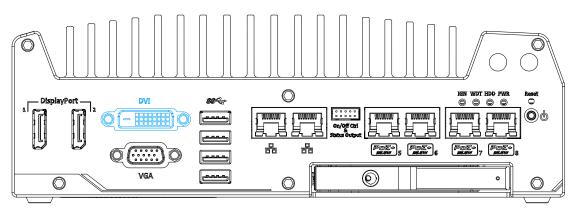
Neousys Nuvo-5100VTC series front panel offer plenty of I/O ports. For demonstration purposes, Nuvo-5108VTC will be used in most illustrations.

2.2.1 DisplayPort

The system has dual DisplayPort (DP) outputs which are digital display interfaces that mainly connect video source and carry audio to a display device. When connecting a single DP, it can deliver up to 4096 x 2304 resolution and each port can deliver up to 2880 x 1800 resolution when both DPs are connected in conjunction. The system is designed to support passive DP adapter/ cable. You can connect to other display devices using DP-to-HDMI cable or DP-to-DVI cable.

DP-to-HDMI

DP-to-DVI

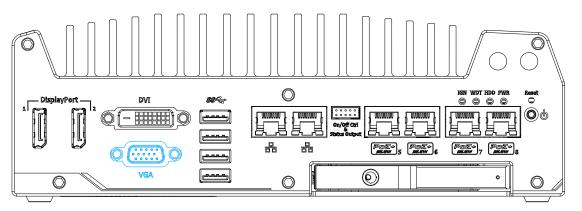

The system supports triple independent display outputs in the following combination of VGA, DVI/ HDMI and DisplayPort. To support multiple display outputs and achieve best DVI/ HDMI output resolution in Windows, you need to install corresponding graphics driver. Please refer to section <u>OS Support and Driver Installation</u> for details.

Triple Independent Dier	lov Configuration	(recolution may be limited)
Thple independent Disp	hay Configuration	(resolution may be limited)

Active display 1	Active display 2	Active display 3
DisplayPort	DisplayPort	DVI or VGA
DisplayPort	DVI	VGA

2.2.2 DVI Port

DVI-D transmits graphics data in digital format and therefore can deliver better image quality at high resolution. The DVI connector on the front panel can either output DVI signals or other digital signals (via an adapter/ cable) depending on the display device connected. It supports resolutions up to 1920x1200@60Hz.


The system supports triple independent display outputs in the following combination of VGA, DVI and DisplayPort. To support multiple display outputs and achieve best DVI output resolution in Windows, you need to install corresponding graphics driver. Please refer to section <u>OS Support and Driver Installation</u> for details.

Active display 1	Active display 2	Active display 3
DisplayPort	DisplayPort	DVI or VGA
DisplayPort	DVI	VGA

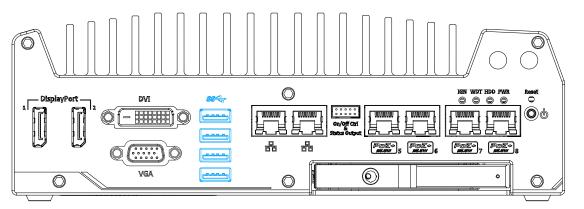
Triple Independent Display Configuration (resolution may be limited)

2.2.3 VGA Port

VGA connector is the most common video display connection. The VGA output supports up to 1920x1200@60Hz resolution. By default, the VGA output is set to "always-on". For users who want to use only digital display interface (eg. DVI or DP), the VGA Output setting can be disabled. To disable, press F2 upon system startup, go to "Advanced > System Agent (SA) Configuration > Graphics Configuration > VGA Output > [Disable].

The system supports triple independent display outputs in the following combination of VGA, DVI/ HDMI and DisplayPort. To support multiple display outputs and achieve best DVI/ HDMI output resolution in Windows, you need to install corresponding graphics driver. Please refer to section <u>OS Support and Driver Installation</u> for details.

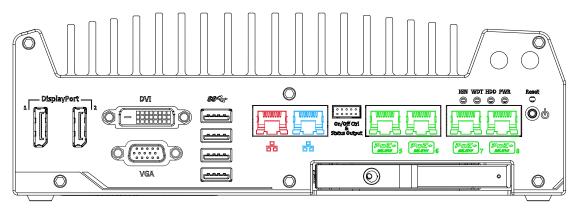
Triple Independent Display Configuration	(resolution may be limited)
---	-----------------------------


Active display 1	Active display 2	Active display 3
DisplayPort	DisplayPort	DVI or VGA
DisplayPort	DVI	VGA

🖗 ΝΟΤΕ

Please make sure your VGA cable includes SDA and SCL (DDC clock and data) signals for correct communication with monitor to get resolution/timing information. A cable without SDA/ SCL can cause blank screen on your VGA monitor due to incorrect resolution/timing output.

2.2.4 USB3.0 Port



The system offers four USB 3.0 (SuperSpeed USB) ports on its front panel. They are implemented via native xHCI (eXtensible Host Controller Interface) controller in Q170 chipset and are backward compatible with USB 2.0, USB 1.1 and USB 1.0 devices. Legacy USB support is also provided so you can use USB keyboard/mouse in DOS environment.

Due to the nature that XHCI driver is not included natively in Windows 7, you may encounter the issue of USB keyboard/mouse not working when installing Windows 7. Neousys offers a Windows-based batch file and step-by-step guide to help you. Please refer to <u>Appendix A Windows 7 Installation</u> for information on installing Windows 7 on Nuvo-5100VTC series.

2.2.5 Ethernet Port / PoE

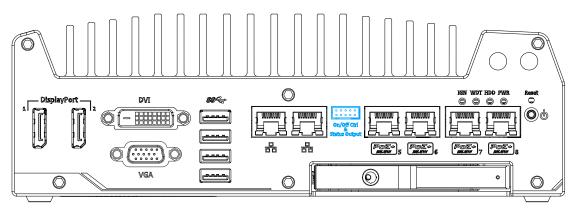
All Nuvo-5100VTC series offer two GbE ports (in **red** and **blue**) while Nuvo-5108VTC has four additional PoE (Power over Ethernet) ports marked in **green** on the front panel. The port marked in **blue** is implemented using Intel[®] I219-LM controller that supports Wake-on-LAN and is also compatible with <u>Intel[®]</u> <u>AMT (Active Management Technology)</u> to support advanced features such as remote SOL desktop and remote on/ off control.

Power over Ethernet (PoE) supplies electrical power and data on a standard CAT-5/CAT-6 Ethernet cable. Acting as a PoE PSE (Power Sourcing Equipment), compliant with IEEE 802.3at, each PoE port delivers up to 25W to a Powered Device (PD). PoE can automatically detect and determine if the connected device requires power or not, so it is compatible with standard Ethernet devices as well.

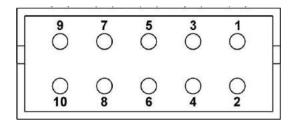
Each port has one dedicated PCI Express link for maximum network performance. Please refer to the table below for LED connection statuses.

LED Color	Status	Description	
		Ethernet port is disconnected	
		Ethernet port is connected and no data transmission	
		Ethernet port is connected and data is transmitting/receiving	

Active/Link LED (Right)

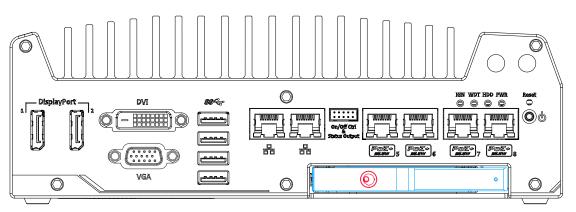

Speed LED (Left)

LED Color	Status	Description
0	Off	10 Mbps
Green or Orange	Green	100 Mbps
e lange	Orange	1000 Mbps

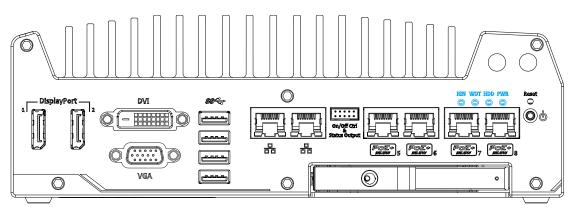

To utilize the GbE port in Windows, you need to install corresponding driver for Intel[®] I210-IT/ I219-LM GbE controller.

2.2.6 On/ Off Ctrl & Status Output

The "On/ Off Control Ctrl & Status Output" connection allows for external switch and LED indicator extension. It is useful when the system is placed in a cabinet or a not easily accessed location. This function is provided via a 2x5 2.0mm pitch wafer connector.


Pin#	Definition	Description	
1	Ctrl+	[Input] Remote on/off control, connecting to an external	
2	Ctrl-	switch to turn on/off the system (polarity is negligible).	
3	Power+	[Output] System power indicator, on if system is turned	
4	Power-	on, off if system is turned off.	
5	HDD+	[Output] Hard drive indicator, flashing when SATA hard	
6	HDD-	drive is active.	
7	Standby Power+	[Output] Standby power indicator, lighting up when DC	
8	Standby Power-	power is applied and system is in S5 (standby) mode.	
9	WDT+	[Output] Watchdog timer indicator, flashing when	
10	WDT-	watchdog timer is started.	

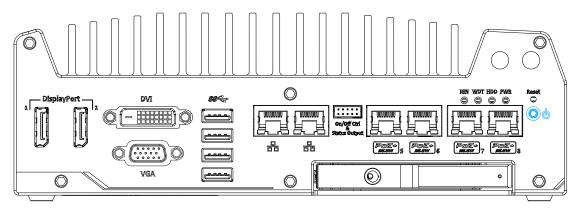
Please make sure the polarity is correct when you connect the external LED indicator to the Status LED Output.



2.2.7 2.5" HDD Tray Lock/ HDD Tray

Nuvo-5100VTC series support an external 2.5" HDD via a hot-swappable tray. Designed for easy access, the HDD tray is secured by a lock (indicated in **red**) and it supports RAID modes 0/ 1 configuration combining with internal HDD/ SSD drive for OS installation (coupled with the internal HDD). To set up RAID, please refer to <u>RAID</u> <u>Volume Configuration</u> section for details.

2.2.8 System Status LED



There are four LED indicators on the front panel: PWR, HDD, WDT and IGN. The descriptions of these four LEDs are listed in the following table.

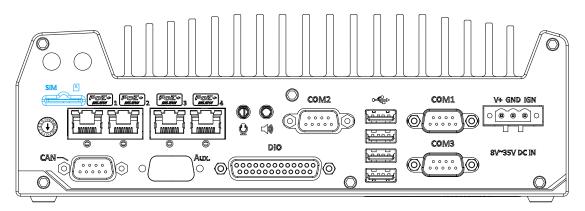
Indicator	Color	Description	
IGN	Green	Ignition signal indicator, lid when IGN is high (12V/ 24V).	
WDT	Yellow	Watchdog timer indicator, flashing when WDT is active	
HDD	Red	Hard drive indicator, flashing when SATA drive is active	
PWR	Green	Power indictor, lid when system is on	

2.2.9 Power Button

The power button is a non-latched switch for ATX mode on/off operation. To turn on the Nuvo-5100VTC series, press the power button and the PWR LED should light-up green. To turn off Nuvo-5100VTC, issuing a shutdown command in OS is preferred, or you can simply press the power button. To force shutdown when the system freezes, press and hold the power button for 5 seconds. Please note that there is a 5-second interval between on/off operations (i.e. once turning off the system, there is a 5-second wait before you can power-on the system).

2.2.10 Reset Button

The reset button is used to manually reset the system in case of system halt or malfunction. To avoid unexpected reset, the button is purposely placed behind the panel. To reset, please use a pin-like object (eg. tip of a pen) to access the reset button.


2.3 Nuvo-5100 VTC Series Rear Panel

Neousys Nuvo-5100VTC series offers additional expansion I/O ports on its rear panel. For demonstration purposes, Nuvo-5108VTC is shown in illustrations.

No.	3 4 5 Item	6 7 8 9 10 11 Description		
1	SIM card slot	With a 3G/ 4G module installed, insert a SIM card to access the operator's network.		
2	Ignition control	The switch allows for the configuration of ignition power on/ off delay by adjusting switch position.		
3	CAN bus port	Allows controller to communicate with other in-vehicle CAN device(s).		
4	PoE+ GbE ports	M12 x-coded connectoris applicable to Nuvo-5100VTConly. The rugged connection guarantees signal integritywhile providing both data and electric power to devices.RJ45 PoE+is applicable to Nuvo-5104VTC / 5108VTCsystems. The Power over Ethernet (PoE) port can provideboth data connection and electric power to devices.		
5	Aux	Reserved for additional DB9 connector.		
6	Microphone-in jack	Microphone-in jack for voice (microphone) input.		
7	DIO	The DIO port provides 4x isolated digital input and 4x isolate output channels.		
8	Speaker-out jack	Speaker-out jack for sound output.		
9	COM ports	There are 3 COM ports for communicating with external devices.		
10	<u>USB 2.0</u>	The USB 2.0 ports are backward with USB 1.1 / 1.0.		
11	<u>3-pin terminal block</u> (DC/ ignition input)	Compatible with DC power input from 8~35V, the terminal block is also used for ignition signal input.		

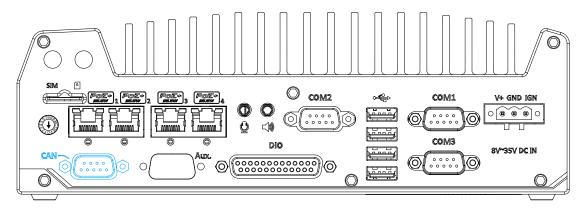
2.3.1 SIM Slot

On the rear panel, there is a panel-accessible SIM socket. By installing a 3G/4G module onto the internal mini-PCIe port, you can have Internet access via telecom operator's network. The SIM socket is a push-push type. The push-push mechanism means the SIM card is push-to-install and push-to-retrieve. Please note that the SIM card must be inserted upside down (gold fingers facing upward).

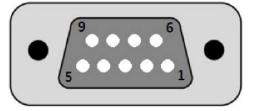
2.3.2 Ignition Control Switch

Nuvo-5100VTC

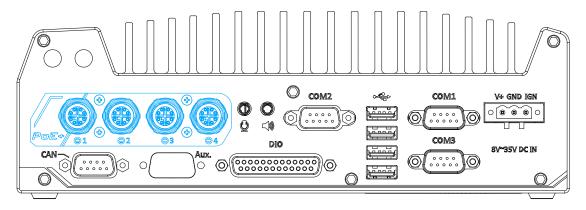
Nuvo-5104/ 5108 VTC

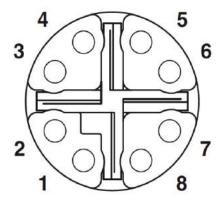

The ignition power control switch features multiple modes for pre and post ignition settings. Please refer to the section <u>Ignition Power Control</u> for details.

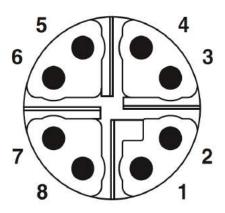
The ignition switch on **Nuvo-5100VTC** is covered by M12 connector's face plate. Use a Philips screw driver to remove the four screws (location shown in **red**), gently pull off the face plate to expose the ignition switch.


The ignition power control switch on **Nuvo-5104/ 5108VTC** can be located on the rear panel. Please use a flathead screwdriver to adjust the position of the ignition power control switch.

2.3.3 CAN Bus Port


CAN bus is a robust industrial bus with a pair of differential signals and is commonly used in various industrial and in-vehicles applications. The system is equipped with a CAN bus DB9 port that is compatible with both industrial and in-vehicle applications. The CAN bus port supports CAN2.0A and CAN2.0B up to 1Mbps.




Pin No.	Definition	I/O	Description
1	GND	-	GND
2	Reserved	-	Reserved pin. Keep unconnected
3	CAN_H	I/O	CAN Bus High-level voltage
4	Reserved	-	Reserved pin. Keep unconnected
5	CAN_L	I/O	CAN Bus Low-level voltage
6	Reserved	-	Reserved pin. Keep unconnected
7	Reserved	-	Reserved pin. Keep unconnected
8	Reserved	-	Reserved pin. Keep unconnected
9	Reserved	-	Reserved pin. Keep unconnected

2.3.4 M12 Power over Ethernet Port (Nuvo-5100 VTC)

M12 socket (panel side)

M12 plug (cable side)

Wire color	Signal	M12 Pin	RJ45 Wire
	D1+	1	1
	D1-	2	2
	D2+	3	3
	D3+	8	4
	D3-	7	5
	D2-	4	6
	D4+	5	7
	D4-	6	8

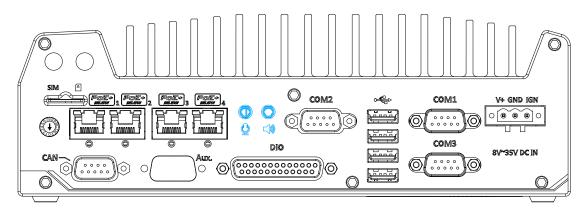
M12 Pin and Corresponding RJ45 Wire Connection

PoE ports on Nuvo-5100VTC are provided via 8-pole, x-coded M12 connectors, offering extraordinary reliability for Ethernet connection. Power over Ethernet (PoE) supplies electrical power along with data on a standard Ethernet cable. As an IEEE 802.3at compliant PSE (Power Sourcing Equipment), each PoE port can deliver up to 25W of power to a Powered Device (PD), such as an IP camera. PoE is able to automatically detect the device connected and determine whether to dispatch power thus it is also compatible with traditional Ethernet devices.

\bigcirc COM2 COM1 ÷ V+ GND IGN O 0 0 0 **(**..... 0 (\mathbf{i}) -10 0 сомз DIO 8V~35V DC IN CAN _ 。。。。。 。。。。。。 0 0 \odot 0000 6 \bigcirc Õ

2.3.5 RJ-45 Power over Ethernet Port (Nuvo-5104VTC / 5108VTC)

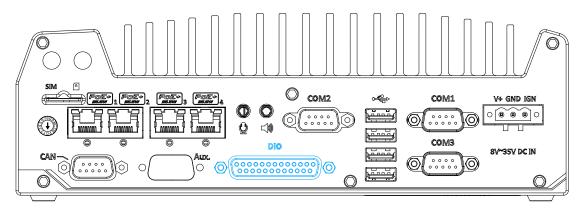
PoE ports on Nuvo-5104VTC and Nuvo-5108VTC are provided via RJ-45 connectors. Power over Ethernet (PoE) is an Ethernet technology that supplies electrical power along with data on a standard CAT-6 Ethernet cable. Acting as a Power Source Equipment (PSE), compliant with IEEE 802.3at standard, each port can deliver up to 25W of power to a Powered Device (PD), such as a PoE IP camera. PoE is able to automatically detect the device connected and determine whether to dispatch power thus it is also compatible with traditional Ethernet devices. Each port is linked to a dedicated PCI Express for maximum network performance. When plugged in, the Ethernet connection status and speed are shown on RJ45 LED indicators.


Active/Link LED

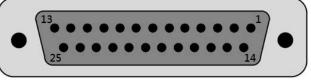
LED Color	Status	Description	
Yellow	Off	Ethernet port is disconnected	
	On Ethernet port is connected and no data transm		
		Ethernet port is connected and data is transmitting/receiving	

Speed LED

LED Color	Status	Description	
Green or	Off	10 Mbps	
Orange	Green	100 Mbps	
	Orange	1000 Mbps	



2.3.6 3.5mm Speaker-out / Microphone-in Jack

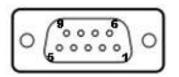

The audio function on Nuvo-5100VTC series uses Intel[®] High Definition Audio in Q170 chipset and Realtek ALC262 codec. There are two audio function jacks, the \bigcirc port is used for microphone input, and the \bigcirc port is used for speaker / headphone output. To utilize the audio function in Windows, you need to install corresponding drivers for both Intel[®] Q170 chipset and Realtek ALC262 codec.

2.3.7 Digital Input/ Output

The system provides 4x isolated digital input channels and 4x isolated digital output channels. The DIO functions support polling mode I/O access and DI change-of-state interrupt. Please refer to <u>Watchdog Timer & Isolated DIO</u> for information on wiring and programming the isolated DIO channels.

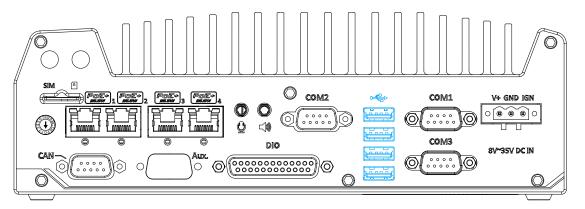
Pin No.	Definition	I/O	Description	
1	ISO_DI3H	I	Digital input channel 3	
2	ISO_DI2H	I	Digital input channel 2	
3	ISO_DI1H	I	Digital input channel 1	
4	ISO_DI0H	I	Digital input channel 0	
5	Reserved	-	Reserved pin. Keep unconnected	
6	Reserved	-	Reserved pin. Keep unconnected	
7	ISO_DO3	0	Digital output channel 3	
8	ISO_DO2	0	Digital output channel 2	
9	ISO_DO1	0	Digital output channel 1	
10	ISO_DO0	0	Digital output channel 0	
11	VDD	-	DO voltage source input for inductive load	
12	ISO5V	-	Isolated 5V power supply	
13	Reserved	-	Reserved pin. Keep unconnected	
14	ISO_DI3L	-	Digital input channel 3 GND	
15	ISO_DI2L	-	Digital input channel 2 GND	
16	ISO_DI1L	-	Digital input channel 1 GND	
17	ISO_DI0L	-	Digital input channel 0 GND	
18	Reserved	-	Reserved pin. Keep unconnected	
19	Reserved	-	Reserved pin. Keep unconnected	

20	DOGND	-	Digital output GND
21	DOGND	-	Digital output GND
22	DOGND	-	Digital output GND
23	DOGND	-	Digital output GND
24	DOGND	-	Digital output GND
25	DOGND	-	Digital output GND

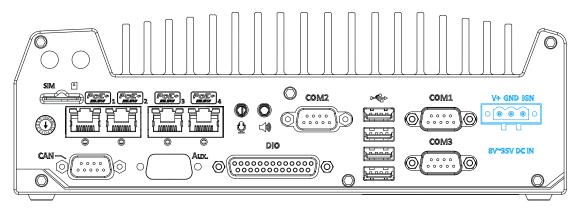


2.3.8 COM Ports

The system has three COM ports for communicating with external devices. COM1, COM2 and COM3 ports are located on the rear panel via 9-pin D-Sub male connectors. They are implemented using industrial-grade ITE8786 Super IO chip (-40 to 85°C) and provide up to 115200 bps baud rate.


COM1 and COM3 are software-configurable RS-232/422/485 ports and COM2 is a standard 9-wire RS-232 port. The operation mode, slew rate and termination of COM1 and COM3 can be set in BIOS setup utility. The following table describes the pin definition of COM ports.

		COM2		
Pin#	RS-232 Mode	RS-422 Mode	RS-485 Mode (Two-wire 485)	RS-232 Mode
1	DCD	-	-	DCD
2	RX	422 TXD+	485 TXD+/RXD+	RX
3	ТХ	422 RXD+	-	ТХ
4	DTR	422 RXD-	-	DTR
5	GND	GND	GND	GND
6	DSR	-	-	DSR
7	RTS	-	-	RTS
8	CTS	422 TXD-	485 TXD-/RXD-	CTS
9	RI	-	-	RI

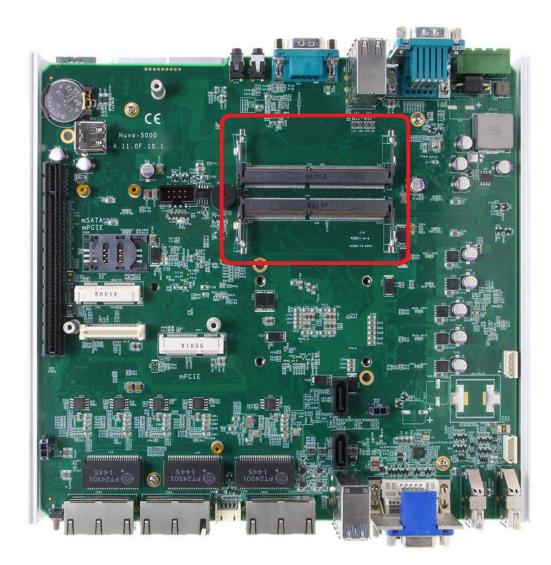

2.3.9 USB2.0 Ports

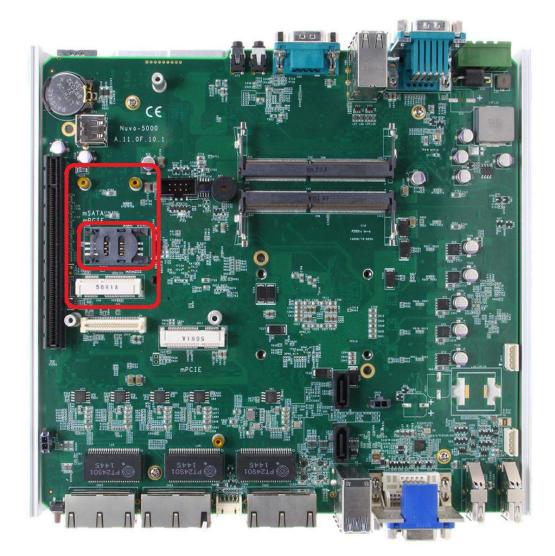
The USB2.0 ports are implemented via native xHCI (eXtensible Host Controller Interface) controller in Q170 chipset and are backward compatible with USB 1.1 and USB 1.0 devices. Legacy USB support is also provided so you can use USB keyboard/mouse in DOS environment.

Due to the nature that XHCI driver is not included natively in Windows 7, you may encounter the issue of USB keyboard/mouse not working when installing Windows 7. Neousys offers a Windows-based batch file and step-by-step guide to help you. Please refer to <u>Appendix A Windows 7 Installation</u> for information on installing Windows 7 on Nuvo-5100VTC series.

2.3.10 3-Pin Terminal Block for DC and Ignition Input

The system allows an 8 to 35V DC power input from via a 3-pin pluggable terminal block. The screw clamping mechanism is a reliable way to wire DC power. In addition to DC power, this terminal block also accepts ignition signal input (IGN).


Please make sure the voltage of DC power is correct before you connect it to the system. Supplying a voltage over 35V will damage the system.


2.4 Internal I/O Components

The internal components of Nuvo-5100VTC series include two SODIMM sockets, SATA ports, mSATA, mini-PCIe sockets and an internal USB port.

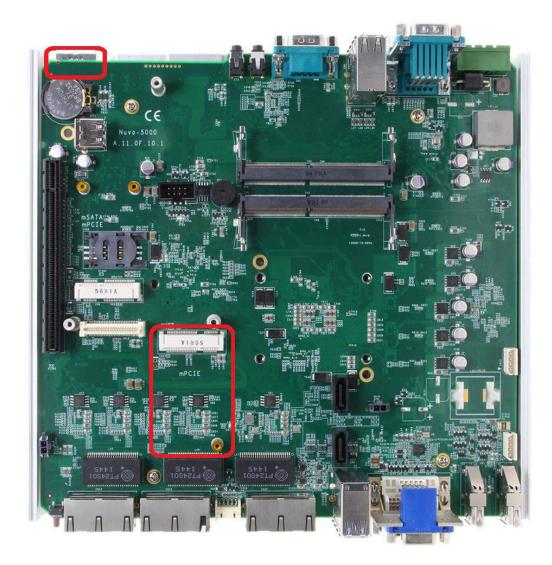
2.4.1 DDR4 SO-DIMM Slots

The system provides two 260-pin DDR4 memory SO-DIMM sockets. It can support up to 32GB maximum capacity by installing two 16GB DDR4 2133 MHz SODIMM modules.

2.4.2 Dual Mode mSATA/ mini-PCIe socket

The system provides a dual mode mSATA/ mini-PCIe socket that is in compliance with mini-PCIe specification rev. 1.2. You can install either an mSATA SSD or mini-PCIe module into this socket and the system will automatically detect and configure it to run PCIe or SATA signals. This mini-PCIe socket is designed with SIM card support. With a SIM card installed, your system can access the internet via your network provider's 3G/ 4G network.

For wireless (WIFI/ 3G/ 4G) communication, multiple SMA antenna apertures can be located on the front and rear panel.


Dual mode mSATA/ mini-PCIe socket definition

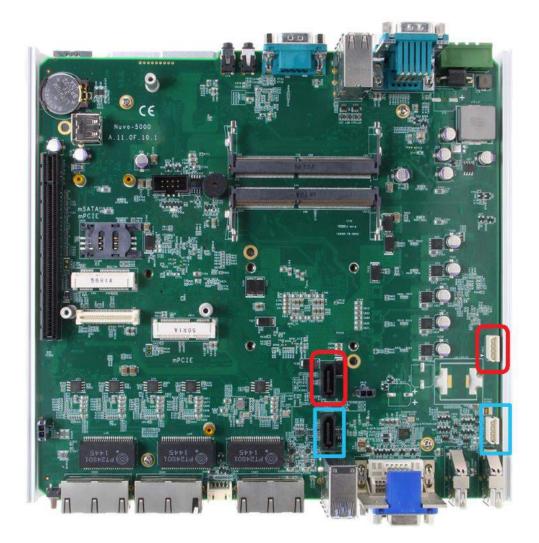
51 45	51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1					
52 50	52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2					
Pin	Signal (mPCle)	Signal (mSATA)	Pin #	Signal (mPCle)	Signal (mSATA)	
1	WAKE#	-	2	+3.3Vaux	+3.3Vaux	
3	COEX1	-	4	GND	GND	
5	COEX2	-	6	+1.5V	+1.5V	
7	CLKREQ#	-	8	UIM PWR	-	
9	GND	GND	10	UIM_DATA	-	
11	REFCLK-	-	12	UIM_CLK	-	
13	REFCLK+	-	14	UIM_RESET	-	
15	GND	GND	16	UIM_VPP	-	
Mech	anical Key					
17	Reserved*	-	18	GND	GND	
19	Reserved*	-	20	W_DISABLE#	-	
21	GND	GND	22	PERST#	-	
23	PERn0	SATA Rxp	24	+3.3Vaux	+3.3Vaux	
25	PERp0	SATA Rxn	26	GND	GND	
27	GND	GND	28	+1.5V	+1.5V	
29	GND	GND	30	SMB CLK	SMB CLK	
31	PETn0	SATA_Txn	32	SMB_DATA	SMB_DATA	
33	PETp0	SATA_Txp	34	GND	GND	
35	GND	GND	36	USB_D-	-	
37	GND	GND	38	USB_D+	-	
39	+3.3Vaux	+3.3Vaux	40	GND	GND	
41	+3.3Vaux	+3.3Vaux	42	LED WWAN#	-	
43	GND	-	44	LED WLAN#	-	
45	Reserved	-	46	LED_WPAN#	-	
47	Reserved	-	48	+1.5V	+1.5V	
49	Reserved	-	50	GND	GND	
51	Reserved	-	52	+3.3Vaux	+3.3Vaux	

Some off-the-shelf mini-PCIe 4G modules are not compliant to standard mini-PCIe interface. They use 1.8V I/O signals instead of standard 3.3V I/O and may have signal conflict. Please consult with Neousys for compatibility when in doubt! Installing an incompatible 4G module may damage the system or the module itself may be damaged.

2.4.3 mini-PCle Socket

This mini-PCIe socket works in cooperation with the panel-accessible SIM slot. By installing a mini-PCIe module, you can add additional features to your system such as WIFI, GPS, CAN bus, analog frame grabber, etc. You can also install a 3G/4G module and SIM card for internet via your service provider's 3G/4G network.

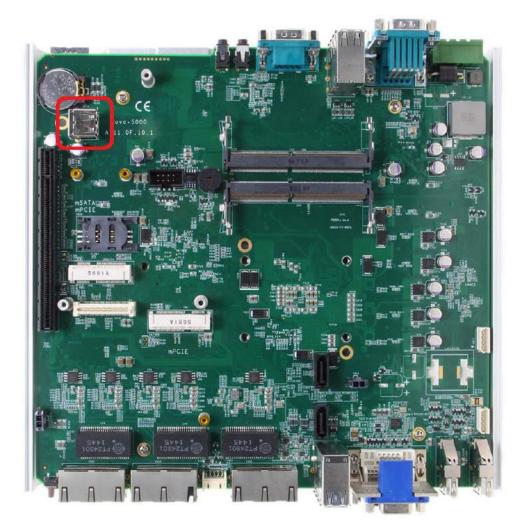
For wireless (WIFI/ 3G/ 4G) communication, multiple SMA antenna apertures can be located on the front and rear panel.


mini-PCle Pin Definition

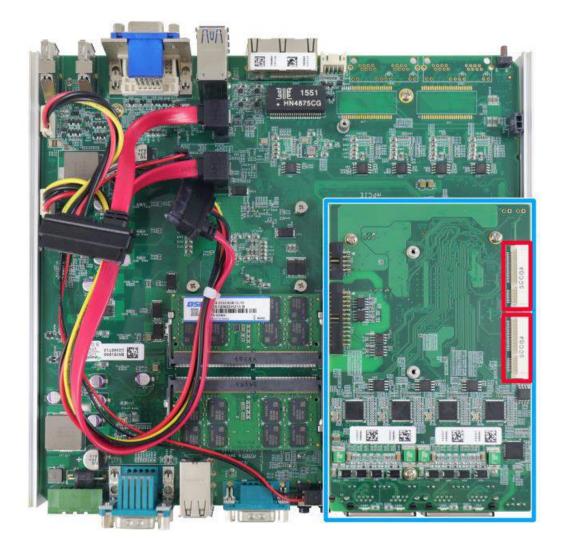
51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5					
52 50 48	52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4				
Pin #	Signal	Pin #	Signal		
1	WAKE#	2	+3.3Vaux		
3	COEX1	4	GND		
5	COEX2	6	+1.5V		
7	CLKREQ#	8	UIM_PWR		
9	GND	10	UIM DATA		
11	REFCLK-	12	UIM CLK		
13	REFCLK+	14	UIM_RESET		
15	GND	16	UIM_VPP		
Mechani					
17	Reserved* (UIM_C8)	18	GND		
19	Reserved* (UIM_C4)	20	W_DISABLE#		
21	GND	22	PERST#		
23	PERn0	24	+3.3Vaux		
<u>25</u> 27	PERp0 GND	<u>26</u> 28	GND +1.5V		
27	GND	30	SMB_CLK		
31	PETn0	32	SMB_OLATA		
33	PETp0	34	GND		
35	GND	36	USB D-		
37	GND	38	USB D+		
39	+3.3Vaux	40	GND		
41	+3.3Vaux	42	LED WWAN#		
43	GND	44	LED WLAN#		
45	Reserved	46	LED_WPAN#		
47	Reserved	48	+1.5V		
49	Reserved	50	GND		
51	Reserved	52	+3.3Vaux		

Some off-the-shelf mini-PCIe 4G modules are not compliant to standard mini-PCIe interface. They use 1.8V I/O signals instead of standard 3.3V I/O and may have signal conflict. Please consult with Neousys for compatibility when in doubt! Installing an incompatible 4G module may damage the system or the module itself may be damaged.

2.4.4 SATA Ports



The system provides two SATA ports which support Gen3, 6 Gb/s SATA signals. Each SATA port features a 7-pin SATA connector and a 4-pin power connector.


The SATA port and power plug indicated in **red** is used in conjunction with the hot plug HDD tray to accommodate a 2.5" HDD/SSD. Standard 22-pin SATA connectors are provided with the system. You may enable the Hot Plug function in the <u>SATA</u> <u>Configuration</u> section.

The SATA port and power plug indicated in **blue** accommodates a 2.5" HDD/ SSD in internal HDD bracket. Standard 22-pin SATA connectors are provided with the system. You may refer to the <u>SATA Configuration</u> section for SATA settings.

2.4.5 Internal USB Port

The system has an internal USB2.0 port on the PCBA. You can utilize this USB port to connect a USB protection dongle inside the chassis of the system.

2.4.6 mini-PCIe Socket on MezIO[™] -V510

There are two additional full-size mini-PCIe sockets available on MezIO[™]-V50. They are implemented with USB signals only and have better compatibility with off-the-shelf 3G/4G mini-PCIe modules. For customers who want to install 3G/ 4G module(s), please take advantage of these two mini-PCIe sockets and the associated SIM slots.

For wireless (3G/4G) communication, multiple SMA antenna apertures can be located on the front and rear panel.

MezIO[™]-V510 mini-PCIe Pin Definition

51 49 4	47 45 43 41 39 37 35 33 31 29 2	7 25 23 3	21 19 17 15 13 11 9 7 5 3 1	
52 50 4	8 46 44 42 40 38 36 34 32 30 28	26 24 22	2 20 18 16 14 12 10 8 6 4 2	
Pin #	Signal	Pin #	Signal	
1	Reserved	2	+3.3Vaux	
3	Reserved	4	GND	
5	Reserved	6	+1.5V	
7	Reserved	8	UIM_PWR	
9	GND	10	UIM DATA	
11	Reserved	12	UIM CLK	
13	Reserved	14	UIM_RESET	
15	GND	16	UIM_VPP	
Mechani	cal Key			
17	Reserved	18	GND	
19	Reserved	20	W_DISABLE#	
21	GND	22	PERST#	
23	Reserved	24	+3.3Vaux	
25	Reserved	26	GND	
27	GND	28	+1.5V	
29	GND	30	Reserved	
31	Reserved	32	Reserved	
33	Reserved	34	GND	
35	GND	36	USB_D-	
37	GND	38	USB_D+	
39	+3.3Vaux	40	GND	
41	+3.3Vaux	42	LED WWAN#	
43	GND	44	LED WLAN#	
45	Reserved	46	LED_WPAN#	
47	Reserved	48	+1.5V	
49	Reserved	50	GND	
51	Reserved	52	+3.3Vaux	

3 System Installation

Before disassembling the system enclosure and installing components and modules, please make sure you have done the following:

- It is recommended that only qualified service personnel should install and service this product to avoid injury or damage to the system.
- Please observe all ESD procedures at all times to avoid damaging the equipment.
- Before disassembling your system, please make sure the system has powered off, all cables and antennae (power, video, data, etc.) are disconnected.
- Place the system on a flat and sturdy surface (remove from mounts or out of server cabinets) before proceeding with the installation/ replacement procedure.

3.1 Disassembling the System Enclosure

- 1. Turn the system upside-down.
- 2. Unscrew the six (6) screws indicated below on the front panel.

3. On the rear panel, remove the ten (10) screws indicated.

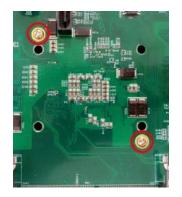
- 4. Gently lift the bottom enclosure cover and disconnect any cables connected to the rear panel. Once disconnected, remove the rear panel.
- 5. Remove the three (3) screws on the MezIO[™] card and gently lift the MezIO[™] card (if you need to install mini-PCIe or mSATA module on PCBA).

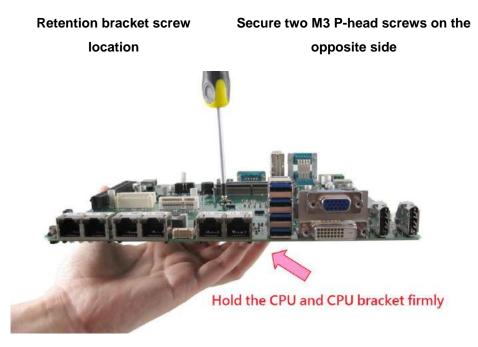
3.2 CPU Installation Procedure

- 1. DO NOT remove the CPU from its container / tray before it is ready to be installed.
- 2. Once the enclosure panels have been removed and to install a CPU into the system, remove the four (4) M3 P-head screws in the illustration below.

 Gently lift the motherboard off the heatsink and turn the motherboard upside-down. You'll see the CPU socket protective cover, place finger tips under the sign "REMOVE" for leverage. Gently lift the cover.

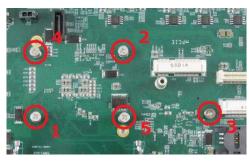
With the protective cover removed, please be careful when handling the motherboard. DO NOT touch the pins in the LGA socket!




4. Remove the CPU from its container/ tray. Match the two notches on the side to the protrusions in the socket, gently lower the CPU into the socket.

5. Locate the CPU retention bracket in the accessory box. Place the retention bracket on the CPU and hold it in place, turn the motherboard around and secure the bracket by tightening two (2) M3 P-head screws.

Hold bracket/ CPU in place along with the motherboard



6. Remove all thermal pad protective films pre-placed on the heatsink.

- 7. With the four (4) motherboard standoffs aligned (please refer to step 2), gently lower the motherboard onto the heatsink
- 8. Secure the four (4) M3 P-head motherboard screws (indicated in yellow) and from the accessory box, five (5) M3 spring screws (indicated in red). Gradually tighten the five screws in the following order for even pressure.

Securing the motherboard

Secure five CPU/ heatsink spring screws in order

- 9. <u>Reinstall the system enclosure</u> and panel when done.
- 10. If you need to install other components, please refer to respective sections.

3.3 Memory Module Installation

There are two memory SO-DIMM slots on the motherboard that support a total maximum of 32GB DDR4-2133. Please follow the procedures below to replace or install the memory modules.

- 1. Disassemble the system enclosure according to steps described in section 3.1.
- 2. The SO-DIMM slots can be located once the bottom cover of the enclosure has been removed.
- To install the memory module, insert gold fingers of the module into the slot at 45 degree angle, push down on the edge of the module and the clips on the side should clip the module into place.

Insert module at 45 degree angle

Press down on outer edge of the memory module

- 4. Repeat steps above to install the other module.
- 5. <u>Reinstall the system enclosure</u> and panel when done.
- 6. If you need to install other components, please refer to respective sections.

3.4 mini-PCIe Module Installation

There are two full size mini-PCIe sockets with SIM card support on the PCBA and another two on the MezIO[™] module. It supports off-the-shelf mini-PCIe modules. Please refer to the following procedures on how to install a mini-PCIe module.

It is recommended to install 4G SIM mini-PCIe modules onto the MezIOTM module's mini-PCIe socket to avoid signal conflict issues.

- 1. Disassemble the system enclosure according to steps described in section 3.1.
- 2. Location of the mini-PCIe sockets on the motherboard shown below. The SIM slot of mini-PCIe socket (in red) is situated on the rear panel.

mini-PCle on motherboard

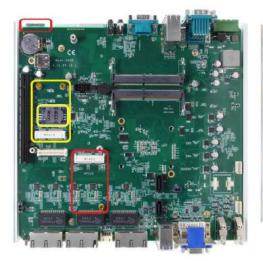
mini-PCIe on MezIO Module

3. Inset the mini-PCIe module's gold finger on a 45 degree angle into the socket, gently press the module down and secure it with an M2.5 P-head screw.

45 degree insertion angle

Secured with M2.5 P-head screw

4. Clip on the IPEX-to-SMA cable to the module and attach the antenna onto the front or rear panel.



Clip on IPEX-to-SMA cable

Attach antenna to panel

 Insert the SIM card (if necessary) situated underneath the mini-PCIe slot on the MezIO[™] module.

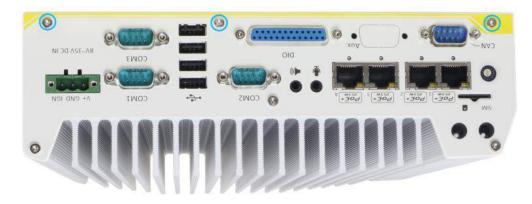
SIM slots for onboard mini-PCle modules

SIM slots for mini-PCIe sockets on MezIO modules (on the opposite side)

- 6. The mini-PCIe socket (in red) works in conjunction with the panel-accessible SIM slot on the rear panel, while other mini-PCIe sockets work with internal SIM slots. Insert the SIM upside down for 3G/4G access via your provider's network. Push the SIM card into the panel, make sure it clicks into the slot and is seated firmly (not protruding) in the slot.
- 7. <u>Reinstall the system enclosure</u> and panel when done.
- 8. If you need to install other components, please refer to respective sections.

3.5 Reinstalling the System Enclosure

Once you have installed or replace the component(s), to reinstall the enclosure, please refer to the following procedure:


1. Fit the front panel on and secure using the three (3) screws shown below.

2. Secure the DIO and CAN bus connector onto the panel with two (2) hex nut standoff each (indicated in red). Then fit the rear panel onto heatsink fins and secure using the three (3) screws shown below.

3. Secure three (3) screws at the bottom of the rear panel.

4. Secure three (3) screws at the bottom of the front panel.

3.6 Internal 2.5" SATA HDD/ SSD Installation

The system has two SATA ports for connecting SATA HDD/ SSD, one internal and one external. Please follow the procedures below to install or replace the hard drives.

1. Place the system upside down on a flat surface and loosen the three (3) screws show below.

2. Remove the protective films on the thermal pad situated in the center of the bracket.

 Place the HDD/ SSD on the bracket, gently press it down against the thermal pad. From the accessory box, use M3 flat-head screws to secure the HDD/ SSD. Make sure the HDD/ SSD is secured in the same orientation as shown in the illustration below.

4. Connect the SATA cable inside the enclosure to the HDD/ SSD

 Gently wiggle the bracket back into the enclosure and secure it with three (3) M3 flat-head screws.

3.7 External 2.5" HDD/ SSD Installation

1. Location of the hot-swappable HDD tray is shown in the illustration below.

2. Pull the handle of the tray door to open the hot-swappable HDD tray.

 With HDD/ SSD label facing upwards, insert the gold finger end of the 2.5" HDD/SSD into the tray.

4. Push the handle into the HDD tray with HDD until it snaps into position.

5. A key is provided (in accessory box) to lock the tray door.

3.8 DC Power Connection

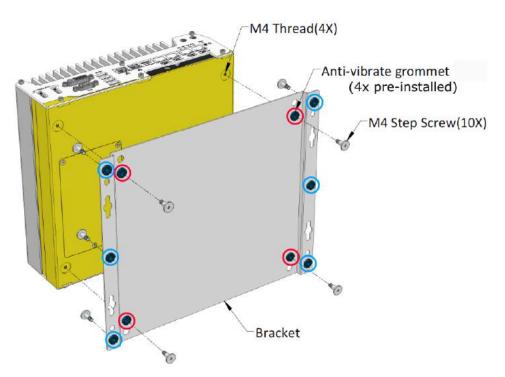
The system uses a 3-pin pluggable terminal block to accept 8~35V DC power input. It is a reliable, convenient and easy method to directly wire cables to the DC power connector. The pluggable terminal block is also used to accept ignition signal To connect DC power via the 3-pin pluggable terminal block, please refer to the procedures described below.

- Before connecting the cables, please make sure the DC power supply is unplugged!
- Take the 3-pin pluggable terminal block out of the accessory box. The terminal block fits the wires with a gauge of 12~24 AWG.
- Carefully identify the positive and negative contacts of your DC power supply and the pluggable terminal block. The polarities between DC power supply and terminal block must be positive (+) to positive (+) and ground (GND) to ground (GND).

- Insert the wires to the matching pluggable terminal block contacts and tighten clamping screws using a Philips screwdriver.
- 5. Plug in the terminal plug into the 3-pin pluggable terminal block on the system enclosure and secure the plug using a flat-head screwdriver.

The system accepts 8~35 VDC when using terminal block for DC input. Please make sure the voltage and polarity of DC power is correct before you connect and power on the system. Supplying a voltage over 35V or incorrect polarity will damage the system!

3.9 Wall Mount/ Anti-Vibration Bracket Installation


Nuvo-5100VTC series is shipped with dedicated wall mount/ anti-vibration for in-vehicle installation. The patented anti-vibration damping bracket offers superior vibration resistance (up to 1Grm with HDD and 5Grms with SSD, operating). To install the bracket, please refer to the following installation procedure.

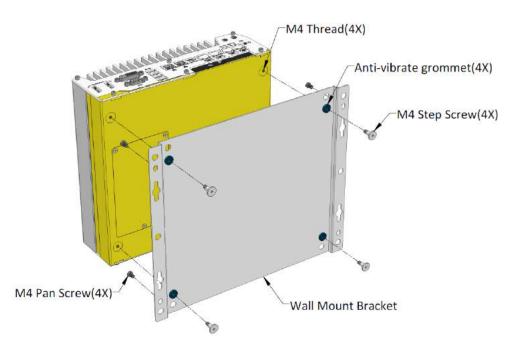
NOTE

You will need to remove the four (4) rubber stands at the bottom of the enclosure if they have been attached.

3.9.1 Anti-vibration Bracket Installation

- Take the anti-vibration damping bracket, ten (10) M4 step screws and six (6) shock-absorbing grommets from the accessory box. There are four (4) shock-absorbing grommets (indicated in red) pre-installed on the bracket.
- Insert the shock-absorbing grommets (indicated in blue) into the brackets shown in the illustration below and fix the anti-vibration damping bracket to the system using four (4) M4 step screws.

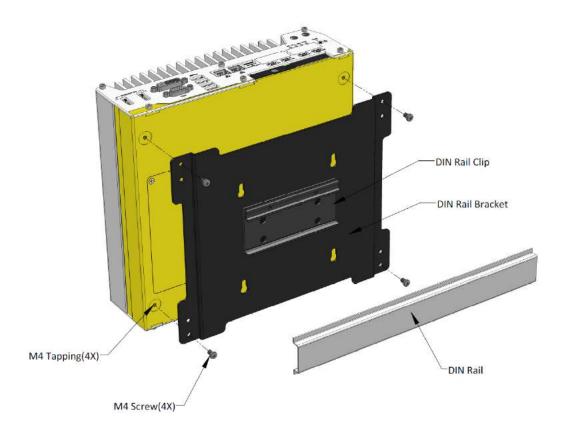
The dammping bracket performs best when the system is installed horizontally.


3. Once the bracket has been secured onto the system, place the system at the desired location on a flat surface, secure it with the other six (6) M4 screws.

3.9.2 Wall Mount Bracket Installation

The included bracket can also be wall mounted. To install the system as a wall mount device, please refer to the following illustration.

 Take the anti-vibration damping bracket, four (4) M4 step screws and four (4) shock-absorbing grommets from the accessory box. Fix the mounting brackets to the system enclosure using M4 step screws.



 Place the system on a flat surface portion of the wall and secure it with four (4) M4 pan screws.

3.10 DIN Rail Installation (Optional)

The system also comes with an optional DIN-rail mounting kit. The kit includes a bracket and a DIN-rail mounting clip. By fixing the clip to the bracket using four M4 flat-head screws and fixing the bracket assembly to the system four M4 screws, complete the installation by clipping the system onto the DIN rail. This option may be useful if you want to deploy it inside an equipment cabinet where DIN rail is available.

3.11 Powering On the System

There are four methods to power on the system

- Using the ignition signal input
- Pressing the power button
- Via an external non-latched switch
- Sending a LAN packet via Ethernet (Wake-on-LAN)

Powering on using the <u>ignition power control</u> is described in a designated section. We will describe the other three processes involved in this section

3.11.1 Powering On Using the Power Button

This is the simplest way to turn on your system. The power button on the front panel is a non-latched switch and behaves as the ATX-mode on/off control. With DC power connected, pushing the power button will turn on the system and the PWR LED indicator will light up. Pushing the button when system is on will turn off the system. If your operating system supports ATX power mode (i.e. Microsoft Windows or Linux), pushing the power button while the system is in operation will result in a pre-defined system behavior, such as shutdown or hibernation.

3.11.2 Powering On Using External Non-latched Switch

If your application demands the system to be placed inside a cabinet, you may use an external non-latched switch to power on/ off the system. The system provides a "<u>On/ Off Control Ctrl & Status Output</u>" connection (a 2x5, 2.0mm pitch wafer connector) for connecting a non-latched switch and acts as the ATX-mode power on/off control switch. The external non-latched switch acts exactly the same as the power button on the front panel. To setup and power on/ off the system using an external non-latched switch (ATX-mode), please follow the steps described below.

1. Acquire a non-latched switch with a 2x5, 2.0mm pitch wafer terminal and the switch must be connected to pin#1 and pin #2 (polarity is negligible).

 Connect the wafer terminal to the "On/Off Control Ctrl & Status Output" connector on the system

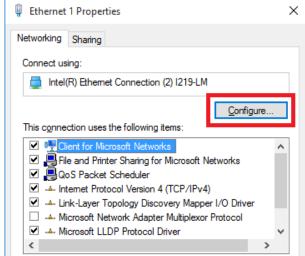
On/Off Control Ctrl & Status Output

Pin #1 and Pin #2

3. With DC power connected, pushing the power button will turn on the system and the PWR LED indicator will light up. Pushing the button when system is on will turn off the system. If your operating system supports ATX power mode (i.e. Microsoft Windows or Linux), pushing the power button while the system is in operation will result in a pre-defined system behavior, such as shutdown or hibernation.

3.11.3 Powering On Using Wake-on-LAN

Wake-on-LAN (WOL) is a mechanism to wake up a computer system from a S5 (system off with standby power) state via issuing a magic packet. The system's Wake-on-LAN compatible GbE port is shown below.



NOTE

Please make sure the Intel chipset and Ethernet driver has been properly installed prior to setting up WOL function.

To enable WOL function, please set up WOL settings in the BIOS and in the operating system by follow the steps described below.

- 1. When the system boots up, press F2 to enter BIOS setup utility.
- 2. Go to the [Power] > [Wake On LAN] and set it to [Enabled].
- Press F10 to "Save changes and exit BIOS" and allow the system boot into the operating system.
- 4. Once booted into the Windows system, press
 "Windows key + E", right-click on "Network
 > Properties > Change adapter settings".
 Locate and double-click on the adapter Intel®
 I219 Gigabit Network
 Connection, click on
 Configure...

5. Click on the **Power Management** tab and check the following options. Click on OK when done.

ntel(R) Etherne	t Connection (2) I219-LM Pro	perties	>
Teaming	VLANs	Driver	Details	Events
General	Link Speed	Advanced	Power I	Management
(intel)	Power Saver a	nd Wake on LA	N Options	
Power Saver C	Options:			
	to ARP requests			<u>^</u>
1 = .	to NS requests w	ithout waking s	ystem	
	ficient Ethernet			×
Wake on LAN	:			
	Magic Packet			^
	Pattern Match	-	_	
Wake on	Magic Packet fro	om power off sta	te	¥
Respond to A	ARP requests with	iout waking syst	em	
the system	apter to respond from sleep or hib ernate mode and	ernate. The sys	tem can remai	n in 🔨
		٦	ОК	Cancel

Magic Packet

The magic packet is a broadcast frame containing anywhere within its payload 6 bytes of all 255 (FF FF FF FF FF FF in hexadecimal), followed by sixteen repetitions of the target computer's 48-bit MAC address.

For example, NIC's 48-bit MAC Address is 78h D0h 04h 0Ah 0Bh 0Ch

DESTINATION SOURCE MISC

FF FF FF FF FF FF

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

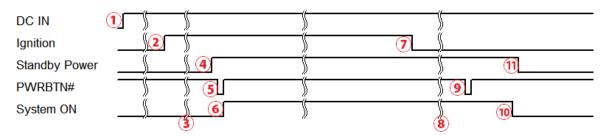
78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

- 78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C
- 78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C
- 78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

MISC CRC

There are some free tools available on Internet that can be used to send a magic packet. Please refer to the following link to understand more about <u>Magic Packet</u>.



3.12 Ignition Power Control

The ignition power control module for in-vehicle applications is a MCU-based implementation that monitors the ignition signal and reacts to turn on/off the system according to predefined on/off delay. Its built-in algorithm supports other features such as ultra-low power standby, battery-low protection, system hard-off, etc. In this section, we'll illustrate the principle of ignition power control and operation modes. For the location of your system's ignition control switch, please go <u>here</u>.

3.12.1 Principles of Ignition Power Control

The basic concept of ignition power control module is to control the timing correlation between ignition signal and system power status. A typical timing correlation is described in following diagram.

- When DC power is supplied to the system, MCU starts to periodically detect ignition signal. Note that only MCU is working at this moment and the overall power consumption is less than 2 mW.
- 2. Ignition signal is active (both 12VDC and 24VDC ignition signals are accepted).
- 3. MCU starts to count a pre-defined power-on delay.
- Once power-on delay expired, MCU turns on necessary standby power for the system (3.3VSB & 5VSB).
- 5. A PWRBTN# pulse is then issued to turn on the system (equivalent to one pressing the power button on the front panel).
- 6. The system is booting and becomes operational.
- 7. After a period of time, the ignition signal becomes inactive.
- 8. MCU starts to count a pre-defined power-off delay.
- 9. Once power-off delay expired, another PWRBTN# pulse is issued to perform a soft-off for the system (ex. a normal shutdown process for Windows system).
- 10. The system is completely shut down.
- 11.As MCU detects system is off, it turns off the standby power for the system, and operates in low power mode again (< 2mW power consumption).

3.12.2 Additional Features of Ignition Power Control

In addition to the typical timing correlation, the ignition power control module offers additional features to provide additional reliability for in-vehicle applications.

1. Low battery detection

The ignition power control module continuously monitors the voltage of DC input when the system is operational. If input voltage is less than 9V (for 12VDC input) or less than 18V (for 24VDC input) over a 60-second duration, it will shut down the system automatically.

2. Guarded power-on/ power-off delay duration

If ignition signal goes inactive during the power-on delay duration, the ignition power control module will cancel the power-on delay process and go back to idle status. Likewise if ignition signal goes active during the power-off delay duration, the ignition power control module will cancel the power-off delay process and keep the system running.

3. System hard-off

In some cases, system may fail to shutdown via a soft-off operation due to system/ application halts. The ignition power control module offers a mechanism called "hard-off" to handle this unexpected condition. By detecting the system status, it can determine whether the system is shutting down normally. If not, the ignition power control module will force cut-off the system power 10 minutes after the power-off delay duration.

4. Smart off-delay

The ignition power control module offers two modes (mode 13 & mode 14) which have very long power-off delay duration for applications require additional off-line time to process after the vehicle has stopped. In these two modes, the ignition power control module will automatically detect the system status during the power-off delay duration. If the system has shutdown (by the application software) prior to power-off delay expiring, it will cut off the system power immediately to prevent further battery consumption.

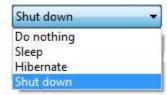
3.12.3 Wiring Ignition Signal

To have ignition power control for in-vehicle usage, you need to supply IGN signal to the system. The IGN input is located on the 3-pin pluggable terminal block (shared with DC power input). Below is the typical wiring configuration for in-vehicle applications.

- 1. Connect car Battery+ line (12V for sedan, 24V for bus/truck) to V+.
- 2. Connect car Batter-/ GND line to GND.
- 3. Connect ACC line to IGN.

Please make sure your DC power source and IGN signal share the same ground.

IGN input accepts 8~35VDC. Supply a voltage higher than 35VDC may damage the system.


3.12.4 Configure your Windows system

When applying ignition power control to your system, please make sure you've configured your Windows system to initiate a shutdown process when pressing the power button. By default, Windows 7/ 8/ 10 goes to sleep (S3) mode when power button is pressed. As sleep (S3) is not a complete shutdown behavior, the ignition control function does not recognize the finish of a normal shut down process and thus users will encounter a system hard-off (power cut-off after 10 minutes). Please configure "When I press the power button" to "Shut down" in your Windows system settings.

Power button settings

When I press the power button:

3.12.5 Operation Modes of Ignition Power Control

You can use the rotary switch to configure the operation mode. The system offers 16 (0~15) operation modes with different power-on/power-off delay configurations.

The ignition control module is also BIOS-configurable. When rotary switch is set to mode 15 (0xF), the ignition power control is set to executed according to parameters configured in BIOS setup menu, which allows richer combination of power-on/ power-off delay and more detailed control parameters.

• Mode 0

Mode 0 is the ATX mode without power-on and power-off delay. User can only use the power button on the front panel to turn on or turn off the system.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
0	N/A	N/A	N/A

• Mode 1

Mode 1 is AT mode without power-on and power-off delay. The system automatically turns on when DC power is applied. A retry mechanism is designed to repeat the power-on cycle if the system fails to boot up.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
1	N/A	N/A	N/A

Mode 2

Mode 2 is designed to have a very minor power on/ off delay of 160ms for applications that requires the system to start up almost at the same as the rest of the equipment it is working in collaboration with.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
2	160ms	160ms	10 minutes

• Mode 3 ~ Mode 12

Mode 3 ~ Mode 12 have various power-on delay and power-off delay. Each
mode supports a hard-off timeout of 10 minutes.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
3	10 seconds	10 seconds	10 minutes
4	10 seconds	1 minute	10 minutes
5	10 seconds	5 minutes	10 minutes
6	30 seconds	1 minute	10 minutes
7	30 seconds	5 minutes	10 minutes
8	30 seconds	10 minutes	10 minutes
9	3 minutes	1 minute	10 minutes
10 (A)	3 minutes	10 minutes	10 minutes
11 (B)	3 minutes	30 minutes	10 minutes
12 (C)	10 minutes	30 minutes	10 minutes

• Mode 13 (D) / Mode 14 (E)

Mode 13 and Mode 14 are ignition power control modes with very long power-off delay. Both modes support the feature of "smart off-delay", which automatically detect system status during power-off delay duration and cut off system power if system is off in prior to power-off delay expired.

Mode Power-on Delay		Power-off Delay	Hard-off Timeout
13 (D) 30 seconds		2 hours	10 minutes
14 (E)	3 minutes	2 hours	10 minutes

• Mode 15 (F)

The ignition control module is implemented to support BIOS-configurable ignition parameters. When the rotary switch is set to 15 (0xF), users can configure ignition parameters in BIOS setup menu.

To configure ignition parameters in BIOS, please follow the steps below.

- 1. Make sure you have set the rotary switch to position 15 (0xF).
- 2. When system boots up, press F2 to enter BIOS setup menu.
- 3. Go to [Power] \rightarrow [Ignition Power Control].

Power	
Ignition Power Control	
IGN Operation Mode	<atx></atx>
Smart Off-Delay	<enabled></enabled>
BIOS POST Check	<enabled></enabled>
Power On Delay	<10 Seconds>
Power Off Delay	<10 Seconds>
Hard-Off Timeout	<10 Minutes>
Battery Voltage	<12V Battery>
Low Battery Threshold	<9V>

4. You can configure parameters for ignition power control according to your application.

[IGN Operation Mode]

ATX	ATX mode without power-on and power-off delay. Same
	operation as rotary switch set to 0.
	Automatically turns on the system when DC power is applied.
AUTO-ON	Same operation as rotary switch set to 1.
	Ignition power control mode. Ignition control is executed
IGN	according to the specified parameters.

[Smart Off-Delay]

	If system is manually shutdown during the power-off delay				
Enabled	period, ignition control module will cut off system power in prior				
	to expiration of power-off delay to save battery power.				
Dischlad	Ignition control module cut off system power only after				
Disabled	power-off delay expired.				

[BIOS POST Check]

	This option secures a boot-to-OS operation. If the system is
Enabled	failed to boot to OS (e.g. disk failure or no bootable device)
	within 60 seconds, ignition control module will cut off system
	power and retry another power on cycle.
Disabled	BIOS POST check is skipped.

[Power On Delay]

Specifies the power-on delay duration. Once IGN signal goes active and sustains for the duration of power-on delay, ignition control module turns on system power and boot up the system.

[Power Off Delay]

Specifies the power-off delay duration. Once IGN signal goes inactive and sustains for the duration of power-off delay, ignition control module performs system shutdown (soft-off) and then cut off system power.

[Hard-off Timeout]

Specifies system hard-off timeout. Once system failed to normally shutdown via a soft-off operation due to system/application halts (e.g. Windows BSOD), ignition control module can compulsively cut off system power after the given hard-off timeout.

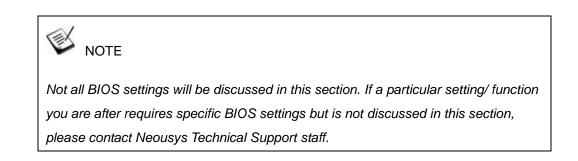
[Battery Voltage]

Specifies the battery voltage of the vehicle where System VTC is deployed. Typically it's 12 VDC for sedan and 24 VDC for bus/truck.

[Low Battery Threshold]

When system is running, ignition control module continuously monitors the battery voltage. Once the battery voltage is lower than the specified threshold, it performs system shutdown (soft-off) and cut off system power to prevent battery drain-out. You should specify the low battery threshold according to the given battery voltage.

5. Press F10 to "Save Changes and Exit". The ignition control module will be reset and operate according to parameters configured in BIOS setup menu.



4 System Configuration

4.1 BIOS Settings

The system is shipped with factory-default BIOS settings meticulously programmed for optimum performance and compatibility. In this section, we'll illustrate some of the BIOS settings you may need to modify. Please always make sure you understand the effect of change before you proceed with any modification. If you are unsure of the function you are changing, it is recommended to change one setting at a time to see its effect(s).

Main Advanced Security Pow		C Series Setup Utility	Rev. 5.0
Hain Advanced Security Pow InsydeH20 Version Build Date Build Dat	er Boot Exit NV51A003.Build1 06/23/2017	170623 1H) i7-6700te CPU @ 2,40GHz	This is the help for the hour, minute, second field. Valid range is from 0 to 23, 0 to 59, 0 to 59. INCREASE/REDUCE : +/
Channel B System Time System Date	8192 HB [11:52:41] [06/28/2017]		
F1 Help Esc Exit	1/↓ Select Item +/+ Select Item	F5/F6 Change Values Enter Select ▶ SubHenu	F9 Setup Defaults F10 Save and Exit

4.1.1 COM1 & COM3 Operating Mode

COM1 and COM3 of System series support RS-232 (full-duplex), RS-422 (full-duplex) and RS-485 (half-duplex) mode. You can set the COM1/ COM3 operating mode via BIOS settings.

Advanced			
Peripheral Configuration			
COH1 Set COH1 as Slew Rate RS-422/485 Termination		<enabled> <rs-232> <low> <disabled></disabled></low></rs-232></enabled>	
C0H2		<enabled></enabled>	
COH3 Set COH3 as Slew Rate RS-422/485 Termination		<enabled> <rs-232> <low> <d i="" sabled=""></d></low></rs-232></enabled>	
COM4 (for Mez10) COM5 (for Mez10)		<enabled> <disabled></disabled></enabled>	Set COM1 as
CAN Bus Termination		<disabled></disabled>	RS-232 RS-422 RS-485
HD Audio		<enabled></enabled>	
F1 Help	1/1 Select		F5/F6 Change Values
Esc Exit	+/+ Select	Item	Enter Select 🕨 SubMenu

Another option in BIOS called "*Slew Rate*" defines how sharp the rising/falling edge is for the output signal of COM1/ COM3. For long-distance RS-422/485 transmission, you may set the "*Slew Rate*" option as "High" to improve signal quality.

Advanced			
Peripheral Configuration			
COM1 Set COM1 as Slew Rate RS-422/485 Termination		<enabled> <rs-232> <low> <d i="" sabled=""></d></low></rs-232></enabled>	
COM2		<enabled></enabled>	
COH3 Set COH3 as Slew Rate RS-422/485 Termination COH4 (for Hezlo)		<enabled> <rs-232> <low> <d i="" sabled=""> <enabled></enabled></d></low></rs-232></enabled>	
COM5 (for Mez10)		<disabled></disabled>	Slew Rate
CAN Bus Termination		<disabled></disabled>	Low High
HD Audio		<enabled></enabled>	
F1 Help	↑/↓ Select	Itom	F5/F6 Change Values
Esc Exit	+/+ Select		Enter Select ► SubMenu

To set COM port operating mode:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Advanced] > [Peripheral Configuration].
- Highlight the COM port you wish to set and press Enter to bring up setting options. Use up/ down arrow to highlight your selection and press Enter.
- 4. Repeat step 2 to set other COM ports.
- 5. Press F10 to "Exit Saving Changes".

4.1.2 CAN bus Termination

The CAN bus is a communication bus running at differential signal pair and it must be terminated. Nuvo-5100VTC series features built-in termination to suppress signal reflection. You should enable the built-in CAN Bus Termination if no external resistor is added to the connection.

Advanced		
Peripheral Configuration		
COM1	<enabled></enabled>	
Set COM1 as	<rs-232></rs-232>	
Slew Rate	<low></low>	
RS-422/485 Termination	<disabled< td=""><td>⊳</td></disabled<>	⊳
COM2	<enabled></enabled>	,
COM3	<enabled></enabled>	•
Set COM3 as	<rs-232></rs-232>	
Slew Rate	<low></low>	
RS-422/485 Termination	<disabled< td=""><td>Þ</td></disabled<>	Þ
COM4 (for Mezl0)	<enabled></enabled>	
COM5 (for Mezl0)	<d i="" led<="" sab="" td=""><td>CAN Bus Termination</td></d>	CAN Bus Termination
CAN Bus Termination	<disabled< td=""><td>I> Disabled Enabled</td></disabled<>	I> Disabled Enabled
HD Audio	<enabled></enabled>	
F1 Help	1/↓ Select Item	F5/F6 Change Values
Esc Exit	+/+ Select Item	Enter Select ► SubMenu

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Advanced] > [Peripheral Configuration].
- 3. Highlight CAN bus Termination and press Enter to bring up options, Disabled/ Enabled, use up/ down arrow to highlight your selection and press Enter.
- 4. Press F10 to "Exit Saving Changes".

4.1.3 SATA Configuration

The system SATA controller supports two (2) operating modes: **AHCI** and **RAID** mode. **AHCI** mode, which exposes SATA's advanced capabilities such as hot swapping and native command queuing, is supported in several later version of operating systems. **RAID** mode provides redundant data storage (RAID 1) or a higher throughput (RAID 0). Nuvo-5100VTC series features built-in hardware RAID. No additional H/W or driver is needed to use RAID function.

Advanced		
SATA Configuration		
SATA Controller(s) SATA Mode Selection	< <mark>Enabled></mark> <ahcl></ahcl>	
SATA Port #1 Port #1 Enable Hot Plug SATA Device Type	Empty <enabled> <disabled> <hard disk="" du<="" td=""><td>rive></td></hard></disabled></enabled>	rive>
SATA Port #2 Port #2 Enable SATA Device Type	Empty <enabled> <hard disk="" du<="" td=""><td>rive></td></hard></enabled>	rive>
SATA Port #3 (Cassette) Port #3 Enable SATA Device Type	<hard disk<="" td=""><td>ATA Mode Selection</td></hard>	ATA Mode Selection
SATA Port #4 (mSATA) Port #4 Enable SATA Device Type		AID
	1/4 Select Item	
F1 Help Esc Exit	+/+ Select Item	F5/F6 Change Values Enter Select ▶ SubMenu

Recommended SATA controller mode settings:

- If you're using Windows Vista, Windows 7/ 8/ 10, or Linux kernel 2.6.19 or later, you can select **AHCI** mode for better performance.
- If you're installing two 2.5" HDD/ SSD and looking for data striping (RAID 0) or data mirroring (RAID 1), you can select **RAID** mode to utilize built-in RAID.

To set SATA controller mode:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Advanced] > [SATA Configuration].
- 3. Highlight the SATA port you wish to set and press Enter to bring up setting options. Use up/ down arrow to highlight your selection and press Enter.

- 4. Repeat step 3 to set other SATA ports.
- 5. Press F10 to "Exit Saving Changes".

🖗 NOTE

By enabling Hot Plug function for SATA Port #1, the front accessible 2.5" HDD/SSD tray may be removed while the system is in operation, please avoid installing operating system onto this drive!

4.1.4 Configure Hot-Swappable HDD Tray

The system has a hot pluggable SATA port (#1) connected to the hot-swappable HDD tray on the front panel. The HDD tray can be configured as removable storage device so you can insert/ remove a HDD/ SSD while the system is in operation without shutting down the system. If it is used for OS installation (single drive or RAID), it is recommended that the drive be configured as a fixed storage device by disabling the hot-plug function.

Advanced			
SATA Configuration			
SATA Controller(s) SATA Mode Selection		<enabled> <ahcl></ahcl></enabled>	
SATA Port #1 Port #1 Enable Hot Plug SATA Device Type		Empty <enabled> <disabled> <hard disk="" drive=""></hard></disabled></enabled>	
SATA Port #2 Port #2 Enable SATA Device Type		Empty <enabled> <hard disk="" drive=""></hard></enabled>	
SATA Port #3 (Cassette) Port #3 Enable SATA Device Type		<hard disk="" driv<="" td=""><td>ot Plug abled</td></hard>	ot Plug abled
SATA Port #4 (mSATA) Port #4 Enable SATA Device Type		Empty Ena <enabled> <solid drive="" state=""></solid></enabled>	bled
F1 Help Esc Exit	1/↓ Select +/→ Select		F5/F6 Change Values Enter Select ► SubMenu

To enable/ disable hot-swap for HDD tray:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Advanced] > [SATA Configuration].
- Go to [SATA Port #1] > [Hot Plug], press Enter to bring up setting options.
 Highlight [Enable] for removable drive or [Disable] for fixed drive, and press Enter.
- 4. Press F10 to "Exit Saving Changes".

4.1.5 **TPM** Availability

Trusted Platform Module (TPM) is a hardware-based cryptoprocessor to secure hardware by integrating cryptographic keys into devices. Nuvo-5100VTC series is designed with on-board TPM 2.0 module. As TPM 2.0 requires 64-bit Windows 7/8/10 with UEFI boot mode, it is disable in BIOS by default. For customers who want to utilize TPM feature, you will need to enable TPM in BIOS as well as install Windows with UEFI mode.

Main Advanced Security I	Power Boot Exit	
Current TPM Device TPM Availability	<tpm 2.0<br=""><hidden></hidden></tpm>	
Supervisor Password	Not Inst	alled
Set Supervisor Password		
		TPM Availability
		Available Hidden
F1 Help Esc Exit	1/↓ Select Item +/→ Select Item	F5/F6 Change Values Enter Select ▶ SubMenu

To enable TMP availability:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- Go to [Security] > [TPM Availability], press Enter to bring up Options, Available/ Hidden.
- 3. Highlight your selection, press Enter and press F10 to "Exit Saving Changes".

4.1.6 CPU SKU Power Configuration

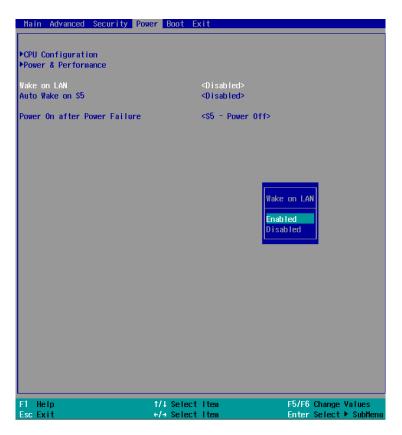
The system supports various 6th-Gen Skylake LGA1151 CPUs. A unique feature, "**SKU Power Config**" is implemented in BIOS to allow users to specify user-defined SKU power limit. Although the system is designed to have best thermal performance with CPUs of 35W TDP, you can install a 65W CPU and limit its SKU power to obtain more computing power. This feature gives you the flexibility of CPU selection and great balance between computing power and operating temperature range.

Here is our suggestion regarding specifying SKU power for system with 65W/ 54W/ 51W CPUs.

- For system running at up to 70°C ambient, specify SKU power to 35 W.
- For system running at up to 60°C ambient, specify SKU power to 45 W.
- For system running at up to 50°C ambient, specify SKU power to Max. TDP.

To configure the CPU SKU power limit:

1. When the system boots up, press F2 to enter BIOS setup utility.


2. Go to [Power] \rightarrow [Power & Performance].

Select a proper value of SKU power limit for [SKU Power Config] option.

4.1.7 Wake on LAN Option

Wake-on-LAN (WOL) is a mechanism which allows you to turn on your System series via Ethernet connection. To utilize Wake-on-LAN function, you have to enable this option first in BIOS settings. Please refer "Powering On Using Wake-on-LAN" to set up the system.

To enable/disable "Wake on LAN" option:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Power] > [Wake on LAN].
- 3. Press Enter to bring up setting options, scroll to the setting you desire and press Enter to set.
- 4. Press F10 to "Exit Saving Changes.

4.1.8 Power On after Power Failure Option

This option defines the behavior of system when DC power is supplied.

Main Advanced Security P	ower Boot Exit	
►CPU Configuration ►Power & Performance		
Wake on LAN Auto Wake on S5	<disabled> <disabled></disabled></disabled>	
Power On after Power Failure	<\$5 - Powe	r Off>
	_	
	Pow	er On after Power Failure
	\$0 \$5	- Power On - Power Off
		,
F1 Help Esc Exit	↑/↓ Select Item +/+ Select Item	F5/F6 Change Values Enter Select ► SubMenu
Value	Description	

S0 – Power OnSystem is powered on when DC power is supplied.S5 – Power OffSystem is kept in off state when DC power is supplied.

To set "Power On after Power Failure" option:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Power] > [Power On after Power Failure].
- Scroll down to highlight [Power On after Power Failure], press Enter to bring up setting options, S0 – Power On or S5 – Power Off, and press Enter to select the setting.
- 4. Press F10 to "Exit Saving Changes"

4.1.9 Boot Type (Legacy/ UEFI)

The system supports both Legacy and Unified Extensible Firmware Interface (UEFI) boot modes. UEFI is a specification proposed by Intel to define a software interface between operating system and platform firmware. Most modern operating systems, such as Windows 7/ 8/ 10 and Linux support both Legacy and UEFI boot modes. The Legacy boot mode uses MBR partition for disk and VBIOS for video initialization, the UEFI boot mode uses GPT partition which supports greater than 2TB partition size and GOP driver for faster video initialization.

Main Advanced Securi	ty Power Boot	Exit		
Boot Type Quick Boot Quiet Boot PXE Boot to LAN Add Boot Options ACPI Selection USB Boot Timeout		<legacy boot<br=""><enabled> <disabled> <last> <acpi3.0> <enabled> [1]</enabled></acpi3.0></last></disabled></enabled></legacy>	Туре>	
WDT for Booting		<disabled></disabled>		
▶Legacy Boot Device		Lega	Boot Type Boot (Legacy+UEF) cy Boot Type Boot Type	
F1 Help Esc Exit		ect Item ect Item	F5/F6 Chang Enter Selec	je Values st ► SubMenu

It is recommended that:

- If you need greater than 2TB disk partition or want to use TPM 2.0 function, you shall choose UEFI boot mode and install operating system accordingly.
- Otherwise you can choose Legacy boot mode for most cases.

To configure Boot Type:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- Go to [Boot] > [Boot Type], press Enter to bring up options, Dual Boot (Legacy+UEFI), Legacy Boot Type, UEFI Boot Type.
- 3. Highlight your selection and press Enter.
- 4. Press F10 to "Exit Saving Changes".

4.1.10 Boot Option for Newly Added Device

The Add Boot Options dedicates the boot sequence order of a newly added device (eg. USB flash drive). The setting allows you to set the newly added device as the first device or as the last device to boot.

Main Advanced Security Pow	er Boot Exit	
Boot Type Quick Boot Quiet Boot PXE Boot to LAN Add Boot Options ACPI Selection USB Boot Timeout	<legacy boot<br=""><enabled> <enabled> <disabled> <last> <acpi3.0> <enabled> [1]</enabled></acpi3.0></last></disabled></enabled></enabled></legacy>	t Type>
WDT for Booting	<disabled></disabled>	
▶Legacy Boot Device		Add Boot Options First Last
F1 Help	↑/↓ Select Item	F5/F6 Change Values
Esc Exit	+/+ Select Item	Enter Select ► SubMenu

To set Add Boot Options:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Boot] > [Add Boot Options], press Enter to bring up options, First or Last.
- 3. Highlight your selection and press Enter, press F10 to "Exit Saving Changes".

4.1.11 Watchdog Timer for Booting

The system BIOS has a useful feature which allows users to use watchdog timer to ensure a successful boot process. You can specify the timeout value for watchdog timer. Once the watchdog timer expires, BIOS issues a reset command to initiate another boot process. You can also set the behavior of how to stop the watchdog timer. There are two options in BIOS menu, "Automatically after POST" and "Manually after Entering OS". When "Automatically after POST" is selected, the BIOS automatically stop the watchdog timer after POST (Power-On Self Test) OK. When "Manually after Entering OS" is selected, it's user's liability to stop the watchdog timer when entering OS. This guarantees the system can always boot to OS, otherwise another booting process will be initiated. For information about programming watchdog timer, please refer to <u>Watchdog Timer & Isolated DIO</u>.

Main Advanced Security	Power Boot Exit	
Boot Type Quick Boot Quiet Boot PXE Boot to LAN Add Boot Options ACPI Selection USB Boot Timeout	<legacy boot<br=""><enabled> <enabled> <disabled> <last> <acpi3.0> <enabled> [1]</enabled></acpi3.0></last></disabled></enabled></enabled></legacy>	Type>
WDT for Booting	<disabled></disabled>	
▶Legacy Boot Device		WDT for Booting Disabled 1 Hin. 3 Him. 5 Hin. 10 Hin.
F1 Help	1/1 Select Item	F5/F6 Change Values
Esc Exit	←/→ Select Item	Enter Select ▶ SubMenu

To set the watchdog timer for boot in BIOS:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to **[Boot]** menu.
- 3. Disable or select timeout value for **[WDT for Booting]** option.
- 4. Once you give a timeout value, the **[WDT Stop Option]** option appears. You can select *"Automatically after POST"* or *"Manually after Entering OS"*.

Main Advanced	Security	Power	Boot	Exit
Boot Type Quick Boot Quiet Boot PXE Boot to LAN Add Boot Options ACP1 Selection USB Boot Timeout				<legacy boot=""> <enabled> <enabled> <d i="" sabled=""> <last> <acp 0="" 3,="" i=""> <enabled> [1]</enabled></acp></last></d></enabled></enabled></legacy>
WDT for Booting WDT Stop Option				<3 Min.> <automatically after="" post=""></automatically>
▶Legacy Boot Dev	ice			WDT Stop Option Automatically Sfter POST Manually after Entering OS

5. Press F10 to "Exit Saving Changes.

4.1.12 Selecting Legacy/ UEFI Boot Device

When multiple bootable devices are connected (e.g. HDD, mSATA, USB flash disk, USB DVD-drive), you may need to select one of them as the boot device. There are two ways to select the device. You can either, press F12 when system boots up to go to Boot Manager and then select one of the devices, or select the boot device in BIOS settings.

To set boot order for devices in UEFI Boot Device:

- 1. When system boots up, press F2 to enter BIOS setup utility
- 2. Go to [Boot] > [UEFI Boot Device]
- Highlight the device you wish to make boot order changes to and press F5/ F6 or +/ - to change device boot order.

To select boot order for devices in Legacy Boot Device:

- 1. When system boots up, press F2 to enter BIOS setup utility
- Go to [Boot] > [Legacy Boot Device], you can choose the type of device to list by selecting "By Device" or "By Device Type".
- Highlight the device or device category you wish to make boot order changes to and press F5/ F6 or +/ - to change device boot order.

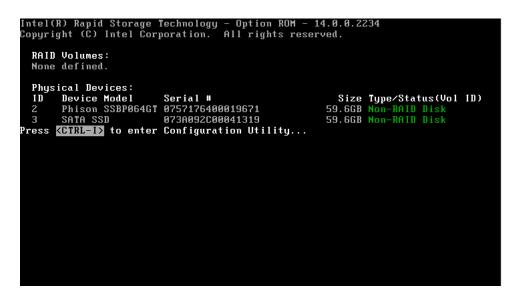
4.2 AMT Configuration

Intel® AMT (Active Management Technology) is a hardware-based technology for remotely managing target PCs via Ethernet connection. Nuvo-5100VTC series supports AMT function via its Ethernet port implemented with Intel I219-LM. Prior to using AMT to remotely control Nuvo-5100VTC series, you need to configure AMT password and network settings.

1. Make sure you have connected the proper Ethernet port (via I219-LM).

2. When the system boots up, press F10 to enter the MEBx configuration menu.

	ine BIOS Extension v11.0.0.00 2003-15 Intel Corporation.	005/Intel(R) HE v11.0.25.3001 All Rights Reserved	
	MAIN MENU		
HEBx Login > Intel(R) ME General Settings > Intel(R) AMT Configuration MEBx Exit			
Intel(R) ME Password			
[↑↓]=Move Highlight	[Enter]=Select Entry	[Esc]=Exit	


3. Highlight MEBx Login and press Enter, a prompt will appear asking for password. The default password is "admin". For further MEBx configuration details, please refer to Intel® MEBX User Guide.

4.3 RAID Volume Configuration

The system supports hardware RAID function for more reliable and efficient disk access. The built-in RAID supports RAID 0 (data stripping) and RAID 1 (data mirroring). You can configure RAID mode according to your needs by following steps listed below.

- Configure the SATA controller by going to [Advanced] > [SATA Configuration] > [SATA Mode Selection] and select [RAID] (refer to <u>section 4.3</u> for details).
- 2. Reboot the system once RAID mode has been set, upon reboot, you will see a UI banner for RAID configuration.

3. Press [Ctrl + I] to enter the RAID configuration menu. Follow the on-screen instructions to create, delete or configure the RAID volume.

Intel(R) Rapid Storage Technology - Option ROM - 14.0.0.2234 Copyright (C) Intel Corporation. All rights reserved. [MAIN MENU]				
3. Reset Disk		 Recovery Volume Options Acceleration Options Exit 		
Physical Devices: ID Device Model 2 Phison SSBP064GT 3 SATA SSD	0757176400019671)	
[↑↓]-Select	[ESC]-Exit	[ENTER]-Select Menu		

5 OS Support and Driver Installation

5.1 Operating System Compatibility

Nuvo-5100VTC series support most operating system developed for Intel® x86 architecture. The following list contains the operating systems which have been tested by Neousys Technology.

- Microsoft Window 7 (x86*/ x64*)
- Microsoft Window 8 (x64)
- Microsoft Window 10 (x64)
- Microsoft Embedded Standard 7
- CentOS 7
- Debian 8.7**
- Fedora 24**
- OpenSUSE 42.1**
- Ubuntu 14.04.4 LTS and 16.04 LTS**

NOTE

* Due to XHCI driver is not included natively in Windows 7, you may encounter Keyboard/ mouse issues when installing Windows 7. Neousys offers a Windows-based batch file and step-by-step installation guide.

** For distributions, graphics driver and RAID function may not be completely implemented in its kernel. You may encounter restrictions when using these features, such as triple independent display and RAID. For optimum operation, it is the users' responsibility to manually check for new drivers and upgrades!

Neousys may remove or update operating system compatibility without prior notice. Please contact us if your operating system of choice is not on the list.

5.2 Install Drivers Automatically

The system comes with a "Drivers & Utilities" DVD that offers "one-click" driver installation process. It automatically detects your Windows operating system and installs all necessary drivers for you system with a single click.

To install drivers automatically, please refer to the following procedures.

 Insert the "Drivers & Utilities" DVD into a USB DVD-drive connect to your system. A setup utility launches and the following dialog appears.

 Click on "Automatic Driver Installation" and the setup utility will automatically detect your Windows operating system and install all necessary drivers. The installation process takes about 6~8 minutes depending on your Windows version. Once driver installation is done, the setup utility reboots your Windows and you may begin using your system.

5.3 Install Drivers Manually

You can also manually install each driver for the system. Please note when installing drivers manually, you need to install the drivers in the following sequence mentioned below.

5.3.1 For Windows 7 (x86)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_Series\Win_ALL\SetupChipset.exe)
- 2. Graphics driver (x:\Driver_Pool\Graphics_6th_i7\Win_7_32\Setup.exe)
- 3. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_32\Setup.exe)
- LAN driver

 (x:\Driver_Pool\GbE_I210_I350\Win_ALL_32\APPS\PROSETDX\Win32\DxSet up.exe)
- 5. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.3.2 For Windows 7 (x64)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_Series\Win_ALL\SetupChipset.exe)
- 2. Graphics driver (x:\Driver_Pool\Graphics_6th_i7\Win_7_8_10_64\Setup.exe)
- 3. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_64\Setup.exe)
- 4. LAN driver (x:\Driver_Pool\GbE_I210_I350\Win_ALL_64\APPS\PROSETDX\Winx64\DxS etup.exe)
- 5. TPM 2.0 driver (x:\Driver_Pool\TPM2\Win7_64\Windows6.1-KB2920188-v7-x64.msu)
- 6. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.3.3 For Windows 8/ 8.1/ 10 (x64)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_Series\Win_ALL\SetupChipset.exe)
- 2. Graphics driver (x:\Driver_Pool\Graphics_6th_i7\Win_7_8_10_64\Setup.exe)
- 3. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_64\Setup.exe)
- LAN driver

 (x:\Driver_Pool\GbE_I210_I350\Win_ALL_64\APPS\PROSETDX\Winx64\DxS etup.exe)
- 5. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.4 Install WDT_DIO Driver Package

Neousys provides a driver package which contains function APIs for watchdog timer, digital I/ O, per-port PoE power on/off control and other platform-related functions. You should install the driver package (WDT_DIO_Setup.exe) in prior to use these functions.

Please install WDT_DIO_Setup_v2.2.5 or later versions for Nuvo-5100VTC Series.

5.4.1 For Windows 7 (x86)

Please execute the driver setup program in the following directory.

x:\Driver_Pool\WDT_DIO\XP_Win7_8_32\WDT_DIO_Setup_v2.2.5.exe

5.4.2 For Windows 7/ 8/ 10 (x64)

Please execute the driver setup program in the following directory.

x:\Driver_Pool\WDT_DIO\Win7_8_64\WDT_DIO_Setup_v2.2.5(x64).exe

5.4.3 For Windows 7/ 8/ 10 (WOW64)

Please execute the driver setup program in the following directory.

x:\Driver_Pool\WDT_DIO\Win7_8_WOW64\WDT_DIO_Setup_v2.2.5(wow64).exe

Appendix A Windows 7 Installation

xHCI Driver Support in Microsoft OS

Intel Skylake platform removed EHCI controller and supports USB 2.0 and USB 3.0 connectivity only through its xHCI controller. For **Windows 8/ 8.1** and **Windows10**, xHCI controller is natively supported. To install Windows 8/ 8.1/ 10, please follow the recommended installation procedure by Microsoft. However, **Windows 7** does not natively support xHCI thus the xHCI driver needs to be manually patched in order to support both USB storage device and USB keyboard/mouse during the OS installation process.

If you would like to install Windows 7, the simplest way is to create a USB thumb drive with Windows 7 installation files and Intel xHCI driver included. Please follow instructions in the following sections to install Windows 7 on your system. Please refer to the following procedures to create an installation flash drive to aid in smooth installation of Windows 7.

User Provided Items For Windows 7 Installation

Before we proceed with the creation of USB flash drive for installation, please make sure you have the following items.

- 1. Windows 7 original installation DVD
- 2. USB thumb drive with at least 4 GB capacity
- 3. Software utility to create ISO image from DVD, e.g.
 - ImgBurn (<u>http://www.imgburn.com</u>)
 - Nero (<u>http://www.nero.com</u>)
- 4. Software utility to create bootable USB drive from ISO file, e.g.
 - Microsoft Windows USB/DVD Download Tool

(https://www.microsoft.com/en-us/download/windows-usb-dvd-download-tool)

- ISO to USB (<u>http://www.isotousb.com</u>)
- 5. You should have at least 10 GB disk space on your local drive.

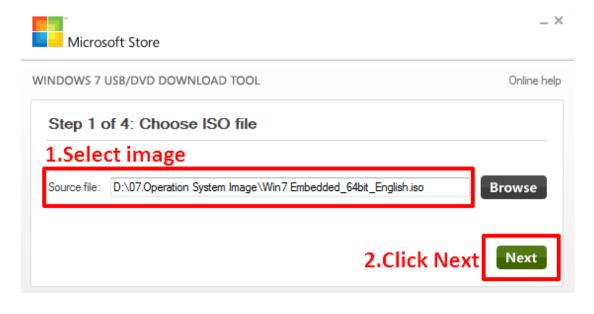
Creating Windows 7 Installation USB Flash Drive

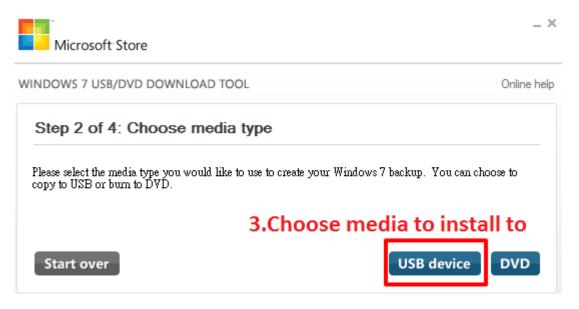
Once you have all the "user provided items", please follow the steps below to create a Windows 7 Installation USB flash drive.

Step 1 - Create .ISO File From Windows 7 DVD

The first step is to create a .iso file from the Windows 7 DVD. Here we use ImgBurn (<u>http://www.imgburn.com</u>) to create the .iso file and save it to local drive.

🥃 ImgBurn		
File View Mode Tools Help 1.Win7 insta	II CD/DVD	
Source [2] [0:0:0] Slimtype eBAU108 5 L (F:) -	Slimtype eBAU108 5 L 4L01 (USB) Current Profile: DVD-ROM Disc Information:	
Label: GSP1RMCPRXFREO_EN_DVD Imp ID: Microsoft CDIMAGE UDF File Sys: ISO9660 (Bootable), UDF (1.02) 2.Save image destinatio	Status: Complete State of Last Session: Complete Frasable: No	
Destination Image: Destination	Size: 3,320,903,680 bytes Time: 360:22:35 (MM:SS:FF) MID: TVG03	
Capacity: 252,865,532 KiB (241 GiB) Free Space: 185,009,088 KiB (176 GiB)	Supported Read Speeds: 3x, 4x, 6x, 8x Current Read Speed: 1.7x - 4x	
	File System Information: Sectors: 1,621,535	
3.Create Image	Settings Read Speed: MAX V / 8x V Add To Write Queue When Done Batch Mode	
Ready		



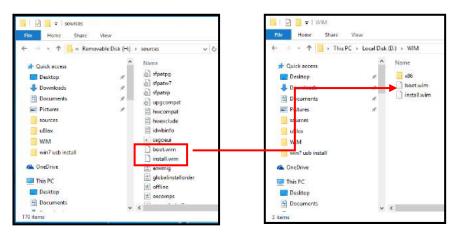

Step 2 - Create USB Flash Drive Installer From .ISO

The next step is to create a bootable USB flash drive using the .iso file created in step 1. Here we use Microsoft Windows USB/DVD Download Tool to create the USB flash drive

(<u>https://www.microsoft.com/en-us/download/windows-usb-dvd-download-tool</u>). Please note that the content of USB flash drive will be destroyed.

- 1. Right-click on the 'Windows 7 USB DVD Download Tool' and select 'Run as administrator'.
- 2. Follow the instructions below to create the USB flash drive installer.

Microsoft Store	_ 3
VINDOWS 7 USB/DVD DOWNLOAD TOOL	Online help
Step 3 of 4: Insert USB device	(*** I
If your device is not displayed click "Refresh." 4.Select USB dev	ice
E:\ (Removable Disk) - 14.6 GB Free 🔹	
Start over 5.Click Begin copying	Begin copying
Microsoft Store	= 3
/INDOWS 7 USB/DVD DOWNLOAD TOOL	Online hel
Step 4 of 4: Creating bootable USB device	I
6.Processing	
Status: Copying files	95%
	Cancel
Microsoft Store	_ ×
WINDOWS 7 USB/DVD DOWNLOAD TOOL	Online help
Bootable USB device created successfully	_ •<∎
Status: Backup completed.	100%
Start over 7.Completed	


Step 3 - Create Folder and Copy Files for Patching Process

In this step, we need to create a working folder on your local drive and copy necessary files to it. Please follow the steps below.

- 1. Create a temporary working folder on your local drive. Here we use D:\WIM as an example.
- 2. Create another folder under D:\WIM for Intel xHCI driver files. Here we use \x86 for Win7 32-bit and \x64 for Win7 64-bit.
- Copy xHCI driver files to the corresponding folder. You can find the driver files from Neousys Driver DVD.
 - For Win7 32-bit, copy all files from x:\Driver_Pool\USB3_10_Series\Win7_ALL\x86 to D:\WIM\x86
 - For Win7 64-bit, copy all files from x:\Driver_Pool\USB3_10_Series\Win7_ALL\x64 to D:\WIM\x64

(where x: denotes the drive of your DVD drive)

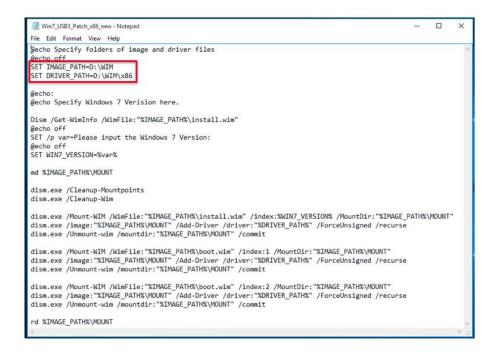
 Copy install.wim and boot.wim from \sources folder of your USB flash drive to D:\WIM.

5. On the created USB drive, locate the folder

"x:\Driver_Pool\USB3_10_Series\Win7_ALL", copy the batch file

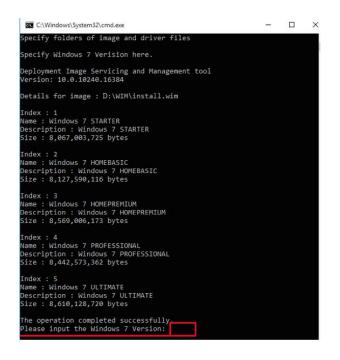
(Win7_USB3_Patch_x86.bat or Win7_USB3_Patch_x64.bat) to the working folder "D:\WIM".

Step 4 - Execute .bat File to Patch .wim Files


To support xHCI for Windows 7 installation, both install.wim and boot.wim need to be patched to include xHCI driver files. Neousys offers Windows-based batch files (Win7_USB3_Patch_x86.bat for Windows 7 32-bit and Win7_USB3_Patch_x64.bat for Windows 7 64-bit) to simplify this process.

1. Before executing the batch file, please make sure folders specified in the batch file are identical to your working folders.

SET IMAGE_PATH=D:\WIM


SET DRIVER_PATH=D:\WIM\x86

SET DRIVER_PATH=D:\WIM\x64

 Right click on the batch file, select "Run as administrator" and click on "Yes" to continue. A menu of various Windows 7 version options will appear, please enter the corresponding index number for your Windows 7 version and press Enter.

- **3.** This will automatically patch both install.wim and boot.wim to include xHCI drivers. The patch process may take a few minutes to complete.
- 4. Once the patch process has finished, please copy the patched "install.wim" and "boot.wim" files from your local drive to the USB flash drives' \sources folder. A prompt may appear asking if you want to overwrite existing files, please click "Yes" and continue.

File Home Share	View			~ 0	File Home Share	View		
← → + ↑ 📄 > This PC	S → Local Disk (D:) → WIM	ڻ ×	Search WIM	Q	← → × ↑ 🦲 « B	emovable Disk (H:) > sources	v Ö	Sear
Quick access Desktop Downloads Decoments Pictures sources uBlox WIM win7 usb install MonDrive This PC Desktop Decoments Sitems	Name 206 boot.vim install.wim		Date modified 1/7/2016 5:36 PM 1/7/2016 5:21 PM 1/7/2016 6:10 PM	Type File folder WIM File WIM File	Cuick access Cuick access Desktop Downloads Documents Pictures UBlox UIM With With Osb Model ConcDrive This PC Desktop Documents 170 fems	Name słpatpg słpatw7 słpatp upgcompat hwcengat hwcengat kwinifo segoeui idwbinfo segoeui idwbinfo segoeui costinie ervmig global installom ervmig socomps	der	

Step 5 - Install Windows 7 Using USB Flash Drive Installer

Now you can use the USB flash drive to install Windows 7 on your system.

- 1. Plug the USB flash drive to USB port.
- 2. Power on the system and press F12 to select USB flash drive as boot device.
- 3. Follow regular installation process to install Windows 7 on your system. The xHCI driver is included in the newly-installed system.

NOTE

If it appears a warning message of "Setup was unable to create a new system partition or locate an existing system partition", please unplug and re-plug the USB flash drive, click 'Refresh' and try again.

	Name		Total Size	Free Space	Туре
	Disk 0 Unall	ocated Space	32.0 GB	32.0 GB	Offline
a la	Disk 1 Unall	ocated Space	32.0 GB	32.0 GB	Offline
9	Disk 2 Unall	ocated Space	64.0 GB	64.0 GB	
€ <u>⊅ R</u> efr ● Loa	resh d Driver	Delete	Eormat	<mark>₩</mark> N <u>e</u> w	

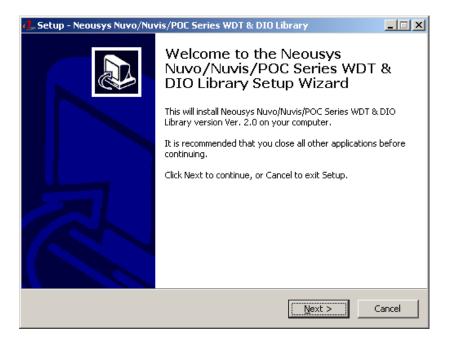
Appendix B Using WDT & DIO

The watchdog timer (WDT) function ensures reliable system operation. The WDT is a hardware mechanism to reset the system if the watchdog timer expires. Users can start the WDT and keep resetting the timer to make sure the system or program is running. Otherwise, the system shall be reset.

In this section, we'll illustrate how to use the function library provided by Neousys to program WDT functions. Currently, WDT driver library supports Windows 7/ 8.1/ 10 32-bit and 64-bit versions. For other OS support, please contact Neousys Technology for further information.

Installing WDT_DIO Library

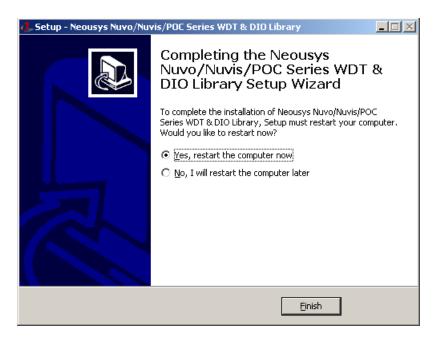
The WDT_DIO function library is delivered in the form of a setup package named **WDT_DIO_Setup.exe**. Prior to programming WDT, you should execute the setup program and install the WDT library. Please use the following WDT_DIO_Setup packages according to your operating system and application.


- For Windows 7/ 8.1/ 10 32-bit OS, please install WDT_DIO_Setup_v2.2.5.exe or later version.
- For Windows 7/ 8.1/ 10 64-bit OS with 64-bit application (x64 mode), please install WDT_DIO_Setup_v2.2.5(x64).exe or later version.
- For Windows 7/ 8.1/ 10 64-bit OS with 32-bit application (WOW64 mode), please install WDT_DIO_Setup_v2.2.5(wow64).exe or later version.

WDT and DIO Library Installation

To setup WDT & DIO Library, please follow instructions below.

1. Execute **WDT_DIO_Setup.2.2.5.exe**. and the following dialog appears.



 Click "Next >" and specify the directory of installing related files. The default directory is C:Weousys\WDT_DIO.

🕖 Setup - Neousys Nuvo/Nuvis/POC Series WDT & DIO Library	_ 🗆 🗙
Select Destination Location Where should Neousys Nuvo/Nuvis/POC Series WDT & DIO Library be installed?	
Setup will install Neousys Nuvo/Nuvis/POC Series WDT & DIO Library into following folder.	the
To continue, click Next. If you would like to select a different folder, click Browse.	
C:\Neousys\WDT_DIO Browse	
At least 5.6 MB of free disk space is required.	
< <u>B</u> ack <u>N</u> ext >	Cancel

3. Once the installation has finished, a dialog will appear to prompt you to reboot the system. The WDT & DIO library will take effect after the system has rebooted.

4. When programming your WDT or DIO program, the related files are located in

Header File:	\Include
Library File:	\Lib
Function Reference:	\Manual
Sample Code:	\Sample\WDT_Demo (Demo for Watchdog Timer)
	\Sample\DIO_Demo (Demo for DIO Control)
	\Sample\COS_Demo (Demo for change-of-state DI)
	\Sample\CAN_Demo (Demo for CAN bus manipulation)
	\Sample\IGN_Demo (Demo for ignition status manipulation)
	\Sample\POE_Demo (Demo for PoE per-port on/off control)

WDT Function Reference

InitWDT

Syntax	BOOL InitWDT(void);
Description:	Initialize the WDT function. You should always invoke InitWDT() before set or start watchdog timer.
Parameter	None
Return Value	TRUE: Successfully initialized
	FALSE: Failed to initialize
Usage	BOOL bRet = InitWDT()

SetWDT

Syntax	BOOL SetWDT(WORD tick, BYTE unit);		
Description	Set timeout value and unit for watchdog timer. When InitWDT() is invoked, a default timeout value of 255 seconds is assigned.		
Parameter	<i>tick</i> WORD value (1 ~ 65535) to indicate timeout ticks.		
	unit BYTE value (0 or 1) to indicate unit of timeout ticks.		
	0 : unit is minute		
	1: unit is second		
	If value of unit is correct (0 or 1), this function returns TRUE,		
Return Value	otherwise FALSE.		
lleene	WORD tick=255;		
Usage	BYTE unit=1; //unit is second.		
	BOOL bRet = SetWDT(tick, unit); //timeout value is 255		
	seconds		

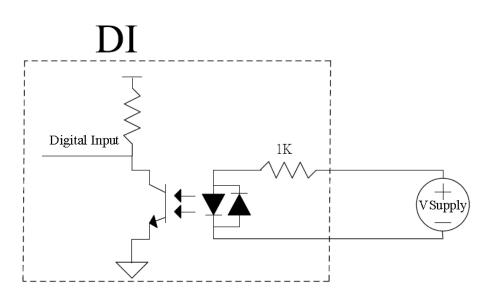
StartWDT

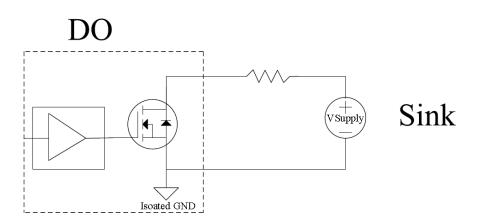
Syntax	BOOL StartWDT(void);	
Description	Starts WDT countdown. Once started, the WDT LED indicator will begin blinking. If ResetWDT() or StopWDT is not invoked before WDT countdowns to 0, the WDT expires and the system resets.	
Parameter	None	
Return Value	If the timeout value is given in correct format (WDT started), this function returns TRUE, otherwise FALSE	
Usage	BOOL bRet = StartWDT()	

ResetWDT

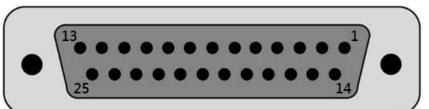
Syntax	BOOL ResetWDT(void);	
Description	Reset the timeout value to the value given by SetWDT().If ResetWDT() or StopWDT is not invoked before WDT countdowns to 0, the WDT expires and the system resets.	
Parameter	None	
Return Value	Always returns TRUE	
Usage	BOOL bRet = ResetWDT()	

StopWDT


Syntax	BOOL StopWDT(void);
Description	Stops the countdown of WDT. When WDT has stopped, the WDT LED indicator stops blinking.
Parameter	None
Return Value	Always returns TRUE
Usage	BOOL bRet = StopWDT()


Using DIO Function

Wiring for DIO


The digital input function of System series is implemented using a photo-coupler with a internally series-connected $1k\Omega$ resistor. You need to provide a voltage to specify the logic high/low state. The input voltage for logic high is 5~24V, and the input voltage for logic low is 0~1.5V.

The digital output function of System series is implemented using Power MOSFET + Analog Device iCoupler® component. The DO channels are configured as NO (normally-open) configuration. When you turn on system, all DO channels have a deterministic state of logic 0 (circuit disconnected from GND return). When logic 1 is specified, MOSFET is activated and GND return path is established. The digital output function on System series supports sinking current connection. The following diagrams are the suggested wiring for DO:

DIO Pin Definition

Pin No.	Definition	I/O	Description				
1	ISO_DI3H	I	Digital input channel 3				
2	ISO_DI2H	1	Digital input channel 2				
3	ISO_DI1H	I	Digital input channel 1				
4	ISO_DI0H	1	Digital input channel 0				
5	Reserved	-	Reserved pin. Keep unconnected				
6	Reserved	-	Reserved pin. Keep unconnected				
7	ISO_DO3	0	Digital output channel 3				
8	ISO_DO2	0	Digital output channel 2				
9	ISO_DO1	0	Digital output channel 1				
10	ISO_DO0	0	Digital output channel 0				
11	VDD	-	DO voltage source input for inductive load				
12	ISO5V	-	Isolated 5V power supply				
13	Reserved	-	Reserved pin. Keep unconnected				
14	ISO_DI3L	-	Digital input channel 3 GND				
15	ISO_DI2L	-	Digital input channel 2 GND				
16	ISO_DI1L	-	Digital input channel 1 GND				
17	ISO_DI0L	-	Digital input channel 0 GND				
18	Reserved	-	Reserved pin. Keep unconnected				
19	Reserved	-	Reserved pin. Keep unconnected				
20	DOGND	-	Digital output GND				
21	DOGND	-	Digital output GND				
22	DOGND	-	Digital output GND				
23	DOGND	-	Digital output GND				
24	DOGND	-	Digital output GND				
25	DOGND	-	Digital output GND				

DIO Function Reference

InitDIO

Syntax	BOOL InitDIO(void);			
Description:	Initialize the DIO function. You should always invoke InitDIO()			
	before write/read any DIO port/channel.			
Parameter	None			
Return Value	TRUE: Successfully initialized			
	FALSE: Failed to initialize			
Usage	BOOL bRet = InitWDT()			

DIReadLine

Syntax	BOOL DIReadLine(BYTE ch);			
Description:	Read a single channel of isolated digital input.			
Parameter	ch			
	BYTE value specifies the DI channel to be read.			
	<i>ch</i> should be a value of 0 ~ 3.			
Return Value	The status (TRUE or FALSE) of the specified DI channel.			
Usage	BYTE ch=3; //DI channel #3			
	BOOL DIChValue = DIReadLine(ch); //read DI channel #3			

DIReadPort

Syntax	WORD DIReadPort(void);
Description:	Read the entire isolated digital input port (4 channels).
Parameter	None
Return Value	The status (TRUE or FALSE) of the specified DI channel.
Usage	WORD DIPortValue = DIReadPort ();

DOWriteLine

	Syntax	void DOWriteLine(BYTE ch, BOOL value);
_	Description:	Write a single channel of isolated digital output.
_	Parameter	<i>ch</i> BYTE value specifies the DO channel to be written. <i>ch</i> should be a value of 0 ~ 3.
_		value BOOL value (TRUE or FALSE) specifies the status of DO channel.
_	Return Value	None
-	Usage	BYTEch=3; //DI channel #3BOOLDOChValue=TRUE;DOWriteLine(ch, DOChValue); //writeDO channel #3 asTRUE

DOWritePort

Syntax	void DOWritePort(WORD value);
Description:	Write the entire isolated digital output port (4 channels).
Parameter	<i>value</i> WORD value specifies the status of the DO port.
	<i>value</i> should be a value of 0~15.
Return Value	None
Usage	WORD DOPortValue=0x0C; //1100b DOWritePort(DOPortValue); //write DO port as 1100b

Syntax	void DOWriteLineChecked(BYTE ch, BOOL value);
Deserintion	Write a single channel of isolated digital output and read-back
	the value of DO register. Note that this function is not returned
Description:	until the DO register is checked and identical to the written
	value.
	ch
	BYTE value specifies the DO channel to be written.
Parameter	<i>ch</i> should be a value of $0 \sim 3$.
Parameter	value
	BOOL value (TRUE or FALSE) specifies the status of DO
	channel.
Return Value	None
	BYTE ch=3; //DI channel #3
	BOOL DOChValue=TRUE;
Usage	DOWriteLineChecked(ch, DOChValue); //write DO channel #3
	as TRUE

DOWriteLineChecked

DOWritePortChecked

Syntax	void DOWritePortChecked(WORD value);
	Write the entire isolated digital output port (8 channels) and
Description	check it has been done. Note that this function is not returned
Description:	until the write value has been checked the same with the
	device registry.
Parameter	value
	WORD value specifies the status of the DO port.
	<i>value</i> should be a value of 0~15.
Return Value	None
Usage	WORD DOPortValue=0x0C; //1100b
	DOWritePortChecked(DOPortValue); //write DO port as 1100b

COS Function Reference

SetupDICOS

Syntax	BOOL SetupDICOS(COS_INT_SETUP *lpSetup, DWORD
	cbSetup);
Description	Setup Digital-Input(DI) Change-of-State(COS) interrupt
·	parameters.
Parameter	IpSetup [in]
	A pointer to a COS_INT_SETUP structure that contains the
	COS configuration information for the DI device.
	This data structure contains the following variables:
	portMask
	WORD value specifies the interrupt mask for corresponding
	channel(s).
	edgeMode
	WORD value specifies that interrupt is generated when level
	change (set to 0) or on rising/falling edge (set to 1) for the
	corresponding channel(s).
	edgeType
	WORD value specifies that interrupt is generated on rising
	edge (set to 0) or falling (set to 1) edge for corresponding
	channel(s). This value is neglected if <i>edgeMode</i> is set to 0 for
	the corresponding channel(s).
	cbSetup [in]
	The length of the structure, in bytes. The caller must set this
	member to size of (COS_INT_SETUP).
Return Value	TRUE if setup successes
	FALSE if setup failed
Usage	COS_INT_SETUP setup;
	memset(&setup, 0, sizeof(setup));
	setup.portMask = 0x0f; // enable ch.0~3
	setup.edgeMode = 0; // level
	setup.edgeType = 0x00; // Lo/Hi
	BOOL bRet = SetupDICOS(&setup, sizeof(setup));

RegisterCallbackDICOS

Syntax	BOOL RegisterCallbackDICOS(COS_INT_CALLBACK
	callback);
Description:	Registers a callback function, which is called when the DICOS
	interrupt occurred.
Parameter	callback [in]
	Specifies the callback function. The prototype for this function
	is descripted as follow.
	voidstdcall callback_func(COS_INT_CALLBACK_ARG*
	arg);
Return Value	TRUE if setup successes,
Return Value	TRUE if setup successes, FALSE if setup failed.
Return Value Usage	
	FALSE if setup failed.
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG*
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg)
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg) {
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg) { printf("data=0x%02x, flag=0x%02x, seq=%02d\n",

StartDICOS

Syntax	BOOL StartDICOS(void);
Description	Start DI Change-of-State interrupt
Parameter	None
Return Value	TRUE if start procedure successes
	FALSE if start procedure failed
Usage	BOOL bRet = StartDICOS();

ī

StopDICOS

Syntax	BOOL StopDICOS(void);
Description	Stop DI Change-of-State interrupt
Parameter	None
Return Value	TRUE if stop procedure successes
	FALSE if stop procedure failed
Usage	BOOL bRet = StopDICOS();

DI COS Example

```
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "WDT_DIO.h"
```

```
//Step 0,
            define a Change-of-State Interrupt callback function
void __stdcall callback_function(COS_INT_CALLBACK_ARG* arg)
{
    printf("data=0x%02x, flag=0x%02x, seq=%02d\n",
    arg->portData, arg->intrFlag, arg->intrSeq);
}
int main(int argc, char* argv[])
{
 //Step 1, initialize DIO library by invoking InitDIO()
    if (! InitDIO())
    {
         printf("InitDIO --> FAILED\n");
         return -1;
    }
    printf("InitDIO --> PASSED\n");
```

```
//Step 2, setup Change-of-State Interrupt mask and level/edge mode
COS_INT_SETUP setup;
```



```
memset(&setup, 0, sizeof(setup));
    setup.portMask = 0x0f;
                                 // 00001111b, enable ch.0~3
    setup.edgeMode = 0x00; // generate interrupt on level change
    setup.edgeType = 0x00;
                                 // rising/falling edge, only effective when
edgeMode = 1
    if (! SetupDICOS(&setup, sizeof(setup)))
    {
         printf("SetupDICOS --> FAILED\n");
         return -2;
    }
    printf("SetupDICOS --> PASSED\n");
 //Step 3, register the callback function
    if (! RegisterCallbackDICOS(callback_function))
    {
         printf("RegisterCallbackDICOS --> FAILED\n");
         return -3;
    }
    printf("RegisterCallbackDICOS --> PASSED\n");
 //Step 4, start the DI Change-of-State Interrupt
    if (! StartDICOS())
    {
         printf("StartDICOS --> FAILED\n");
         return -4;
    }
    printf("StartDICOS --> PASSED\n");
    printf("\npress any key to stop...\n");
    system("pause >nul");
 //Step 5, stop the DI Change-of-State Interrupt operation
    if (! StopDICOS())
    {
         printf("StopDICOS --> FAILED\n");
```



```
return -5;

}

printf("StopDICOS --> PASSED\n");

printf("\npress any key to exit...\n");

system("pause >nul");

return 0;
```

}

Appendix C CAN bus Function

Users can configure the CAN Bus, as well as get access to the bus, via APIs included in the WDT_DIO driver package. This section provides API functions, parameters and definitions for users to create their own software applications.

CAN Bus Function Reference

Syntax	BOOL CAN_RegisterReceived(DWORD idx, void (stdcall
	*pfnHandler)(CAN_MSG *lpMsg, DWORD cbMsg));
Description	Registers a callback function. It is called when the CAN
	controller has received a message object
Parameter	idx [in]
	Specifies the index of CAN bus controllers. Currently there are
	only one CAN bus controller.
	<i>pfnHandler</i> [in]
	Specifies the callback function. The prototype for this function
	is descripted as follow.
	voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD
	cbMsg);
Return Value	TRUE if registration successes
	FALSE if registration failed
Usage	voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD
Usage	
Usage	voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD
Usage	voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg)
Usage	voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) {
Usage	<pre>voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) { printf("%08x, %d, %02x %02x %02x %02x %02x %02x</pre>
Usage	<pre>voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) { printf("%08x, %d, %02x %02x %02x %02x %02x %02x %02x %02x\r\n", lpMsg->id, lpMsg->len, lpMsg->data[0],</pre>
Usage	<pre>voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) { printf("%08x, %d, %02x %02x %02x %02x %02x %02x %02x %02x\r\n", lpMsg->id, lpMsg->len, lpMsg->data[0], lpMsg->data[1], lpMsg->data[2], lpMsg->data[3],</pre>
Usage	<pre>voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) { printf("%08x, %d, %02x %02x %02x %02x %02x %02x %02x %02x\r\n", lpMsg->id, lpMsg->len, lpMsg->data[0], lpMsg->data[1], lpMsg->data[2], lpMsg->data[3], lpMsg->data[4], lpMsg->data[5], lpMsg->data[6],</pre>
Usage	<pre>voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) { printf("%08x, %d, %02x %02x %02x %02x %02x %02x %02x %02x\r\n", lpMsg->id, lpMsg->len, lpMsg->data[0], lpMsg->data[1], lpMsg->data[2], lpMsg->data[3], lpMsg->data[4], lpMsg->data[5], lpMsg->data[6], lpMsg->data[7]);</pre>
Usage	<pre>voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) { printf("%08x, %d, %02x %02x %02x %02x %02x %02x %02x %02x\r\n", lpMsg->id, lpMsg->len, lpMsg->data[0], lpMsg->data[1], lpMsg->data[2], lpMsg->data[3], lpMsg->data[4], lpMsg->data[5], lpMsg->data[6], lpMsg->data[7]);</pre>
Usage	<pre>voidstdcall CAN0_Received(CAN_MSG *lpMsg, DWORD cbMsg) { printf("%08x, %d, %02x %02x %02x %02x %02x %02x %02x %02x\r\n", lpMsg->id, lpMsg->len, lpMsg->data[0], lpMsg->data[1], lpMsg->data[2], lpMsg->data[3], lpMsg->data[4], lpMsg->data[5], lpMsg->data[6], lpMsg->data[7]); }</pre>

CAN_RegisterReceived

{
 printf("CAN_RegisterReceived is FAILED !\r\n");
 }
}

RegisterStatus	
Syntax	BOOL CAN_RegisterStatus(DWORD idx, void (stdcall
	*pfnHandler)(DWORD status));
Description	Registers a callback function, which is called when the CAN
	controller has received a status interrupt.
Parameter	idx [in]
	Specifies the index of CAN bus controllers. Currently there are
	only one CAN bus controller.
	pfnHandler [in]
	Specifies the callback function. The prototype for this function
	is descripted as follow.
	voidstdcall CAN0_Status(DWORD status);
Return Value	TRUE if registration successes
	FALSE if registration failed
Usage	voidstdcall CAN0_Status(DWORD status)
	{
	printf("%08x\r\n", status);
	}
	void main(int argc, char *argv[])
	{
	if (! CAN_RegisterStatus(0, CAN0_Status))
	{
	printf("CAN_RegisterStatus is FAILED !\r\n");
	}
	}
	}

CAN_RegisterStatus

Syntax	BOOL CAN_Setup(DWORD idx, CAN_SETUP *lpSetup,
	DWORD cbSetup);
Description	Setup timing correlation of trigger source input (DI) and pulse
	target output (DO) for Deterministic Trigger Fan-Out function.
Parameter	idx [in]
	Specifies the index of CAN bus controllers. Currently there are
	only one CAN bus controller.
	<i>lpSetup</i> [in]
	A pointer to a CAN_SETUP structure that contains the
	CAN-Bus configuration. This data structure contains the
	following variables:
	Bitrate
	DWORD value specifies the bit rate of the specified CAN
	controller.
	recvConfig
	DWORD value specifies the received message configuration.
	recvld
	DWORD value specifies the received identity number.
	recvMask
	DWORD value specifies the mask for received identity
	number.
	cbSetup [in]
	The length of the structure, in bytes. The caller must set this
	member to size of (CAN_SETUP).
Return Value	TRUE if setup successes,
	FALSE if setup failed.
Usage	

CAN_Setup

CAN_Start

BOOL CAN_Start(DWORD idx);	
Start CAN Bus transmit and receive operation.	
idx [in]	
Specifies the index of CAN bus controllers. Currently there are	
only one CAN bus controller.	
TRUE if start procedure successes	
FALSE if start procedure failed	
BOOL bRet = CAN_Start(0);	

CAN_Stop

Syntax	BOOL CAN_Stop(DWORD idx);	
Description	Stop CAN Bus controller operation.	
Parameter	idx [in]	
	Specifies the index of CAN bus controllers. Currently there are	
	only one CAN bus controller.	
Return Value	TRUE if stop procedure successes	
	FALSE if stop procedure failed	
Usage	BOOL bRet = CAN_Stop(0);	

ena	
Syntax	BOOL CAN_Send(DWORD idx , CAN_MSG *lpMsg, DWORD
	cbMsg);
Description	Put message object into CAN Bus controller.
Parameter	<i>idx</i> [in]
	Specifies the index of CAN bus controllers. Currently there are
	only one CAN bus controller.
	<i>lpMsg</i> [in]
	A pointer to a CAN_MSG structure that contains the CAN-Bus
	message object. This data structure contains the following
	variables:.
	id
	DWORD value specifies the identity number of the message
	object.
	flags
	WORD value specifies the status or configuration of the
	message object.
	extra
	BYTE value specifies nothing but does reserved.
	len
	BYTE value specifies the length of the message object.
	data
	BYTE array specifies the data of the message object.
	<i>cbMsg</i> [in]
	The length of the structure, in bytes. The caller must set this
	member to size of (CAN_MSG).
Return Value	TRUE if stop procedure successes
	FALSE if stop procedure failed
Usage	void main(int argc, char *argv[])
	{
	CAN_MSG canMsg;
	memset(&canMsg, 0, sizeof(canMag));
	if (! CAN_Send(0, &canMsg, sizeof(canMsg)))
	{
	printf("CAN_Send is FAILED !\r\n");
	}
	}

CAN_Send

Appendix D Ignition Control

Function

The system supports ignition control. This is a hardware functionality and control by the on-board micro controller. However, the following APIs enable users to check the status and configuration. Therefore, actions in users' software applications are possible according to different ignition status.

Ignition Control Function Reference

IGN_	_GetState	
	• •	

Syntax	BOOL IGN_GetState(DWORD *lpState);
Description	Get current ignition input status
Parameter	<i>lpState</i> [in]
	pointer to DWORD value which represents the state of ignition
	input.
Return Value	TRUE if stop procedure successes
	FALSE if stop procedure failed
Usage	void main(int argc, char *argv[])
	{
	DWORD state;
	state = 0;
	if (! IGN_GetState(&state))
	{
	printf("IGN_GetState is FAILED !\r\n");
	}
	}

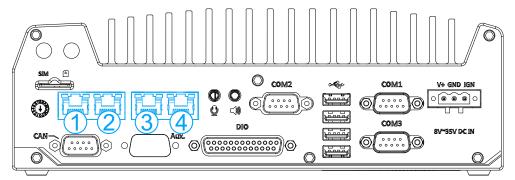
IGN_GetBatteryVoltage

Syntax	BOOL IGN_GetBatteryVoltage(double *lpVoltage);
Description	Get current DC input voltage
Parameter	lpVoltage [in]
	pointer to double value which represents the input voltage.
Return Value	TRUE if procedure successful
	FALSE if procedure failed
Usage	void main(int argc, char *argv[])
	{
	double voltage;
	voltage = 0;
	if (! IGN_GetBatteryVoltage(&voltage))
	{
	printf("IGN_GetBatteryVoltage is FAILED !\r\n");
	}
	}

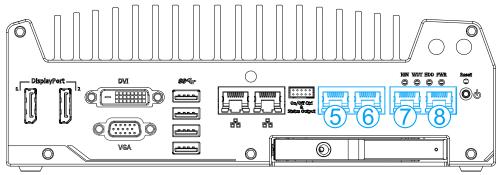
IGN_GetSetting

etSetting	
Syntax	BOOL IGN_GetSetting(IGN_SETTING *lpSetting, DWORD
	cbSetting);
Description	Get ignition BIOS setting information
Parameter	<i>lpSetting</i> [in]
	A pointer to an IGN_SETTING structure that contains the
	ignition setting from BIOS. This data structure contains the
	following variables:
	mode
	BYTE value specifies the operation mode of the ignition
	controller. (0: atx, 1: at, 2~7: ignition mode)
	batteryType
	BYTE value specifies the battery type. (0: 12v, 1: 24v)
	isSmartOff
	BYTE value specifies the smart off function is enabled or not.
	(0: disabled, 1: enabled)
	isPostCheck
	BYTE value specifies the post check function is enabled or
	not. (0: disabled, 1: enabled)
	onDelay
	DWORD value specifies the delay count in seconds until
	ignition controller turn on the machine.
	offDelay
	DWORD value specifies the delay count in seconds until
	ignition controller turn off the machine.
	hardOffTimeout
	DWORD value specifies the limit count in seconds while
	ignition controller could not turn off the machine.
	lowVolThreshold
	DOUBLE precision floating point number specifies the low
	voltage limit then ignition controller will turn off the machine.
Return Value	TRUE if procedure successful
	FALSE if procedure failed
Usage	int main(int argc, char *argv[])
	{
	IGN_SETTING setting;
	memset(&setting, 0, sizeof(setting));
	if (! IGN_GetSetting(&setting, sizeof(setting)))


```
{
    function of the fun
```



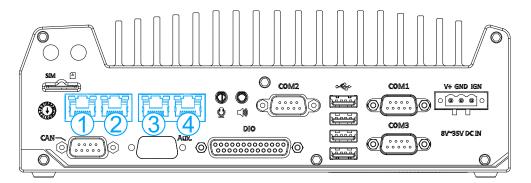
Appendix E PoE On/ Off Control


Nuvo-5108VTC series offers 802.3at PoE+ ports with a unique feature to allow users manually turn on or off the power supply of each PoE port. This function can be useful in power device (PD) fault-recovery or power reset. The APIs are part of Neousys WDT_DIO driver package. Please follow the instructions in <u>Appendix B Watchdog Timer & Isolated DIO</u> to install the driver package prior to programming PoE on/off control function.

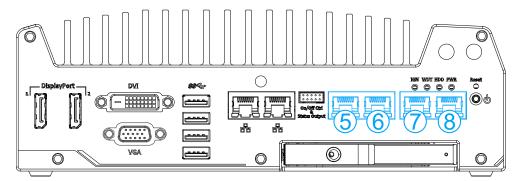
GetStatusPoEPort

Syntax	BYTE GetStatusPoEPort (Byte port);
Description	Get current on/off status of designated PoE port.
Parameter	port
	BYTE value specifies the index of PoE port. Please refer to the
	following illustration, <i>port</i> should be a value of 1 ~ 4
	(Nuvo-5100VTC/ 5104VTC) or 1 ~ 8 (Nuvo-5108VTC).
Return Value	BYTE value indicating PoE on/off status
	0 if port is disabled (off)
	1 if port is enabled (on)
Usage	BYTE bEnabled = GetStatusPoEPort (1); //Get on/off status of
	PoE Port#1

PoE ports 1/2/3/4 are on the rear panel of Nuvo-5100VTC series

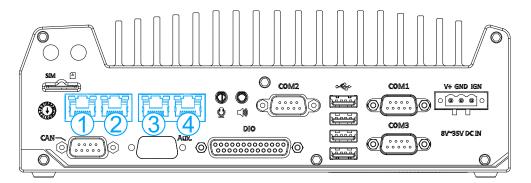


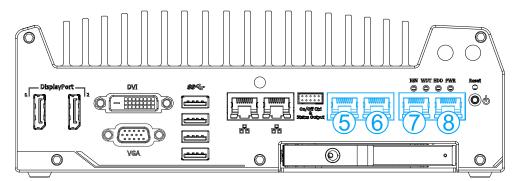
PoE ports 5/ 6/ 7/ 8 are on the front panel of Nuvo-5108VTC



EnablePoEPort

Syntax	BOOL EnablePoEPort (BYTE port);
Description	Turn on PoE power of designated PoE port.
Parameter	port
	BYTE value specifies the index of PoE port. Please refer to the
	following illustration, <i>port</i> should be a value of 1 ~ 4
	(Nuvo-5100VTC/ 5104VTC) or 1 ~ 8 (Nuvo-5108VTC).
Return Value	TRUE if enabled success
	FALSE if fail to enable.
Usage	BOOL bRet = EnablePoEPort (1); //Turn on PoE Port#1


PoE ports 1/2/3/4 are on the rear panel of Nuvo-5100VTC series


PoE ports 5/ 6/ 7/ 8 are on the front panel of Nuvo-5108VTC

DisablePoEPort

Syntax	BOOL DisablePoEPort (BYTE port);	
Description	Turn off PoE power of designated PoE port	
Parameter	Parameter port	
	BYTE value specifies the index of PoE port. Please refer to the	
	following illustration, <i>port</i> should be a value of 1 ~ 4	
	(Nuvo-5100VTC/ 5104VTC) or 1 ~ 8 (Nuvo-5108VTC).	
Return Value	TRUE if disabled success	
	FALSE if fail to disable	
Usage	BOOL bRet = DisablePoEPort (1); //Turn off PoE Port#1	

PoE ports 1/ 2/ 3/ 4 are on the back panel of Nuvo-5100VTC series

PoE ports 5/ 6/ 7/ 8 are on the front panel of Nuvo-5108VTC